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A. SCIENTIFIC OBJECTIVES: The objective of this research program is to devise 

innovative joint time-frequency (JTF) processing concepts for radar image enhancement 

and physics-based feature extraction. In particular, we investigate how JTF techniques 

can be utilized to enhance synthetic aperture radar (SAR) and inverse synthetic aperture 

radar (ISAR) imageries by removing artifacts due to uncompensated target motion, 

complex target scattering physics, articulating target components and clutter and 

propagation effects. Furthermore, we set out to re-interpret the extracted artifacts in a 

more meaningful feature space so that they can be utilized to enhance the performance of 

target identification algorithms. This research is leveraged against our previous JTF work 

under the Joint Services Electronics Program as well as our state-of-the-art radar 

signature simulation capabilities. The JTF-based radar image processing tools developed 

under this program will be disseminated to radar researchers in the US Navy. 

B. SUMMARY  OF  RESULTS  AND  SIGNIFICANT  ACCOMPLISHMENTS: 

During this program we have followed two lines of research: (i) processing real radar 

data to identify needed areas of research and to test our JTF algorithms, (ii) developing 

new JTF algorithms to address the problem areas identified in (i). 

Our accomplishments along the first line of research include: 



1.1 Application of JTF motion compensation algorithm to NATO TIRA radar data. 

1.2 Processing of NATO MERIC radar data. 

1.3 Processing of Navy SCATR data. 

Along the second line of research, we have focused on two key research areas 

identified from processing of measurement data. The first area focuses on the imaging of 

targets with movable components. We have developed a number of JTF algorithms to 

extract features from targets having moving components: 

2.1 Removal of image artifacts due to helicopter rotor blades. 

2.2 Removal of image artifacts due to jet engine modulation. 

2.3 Extraction  of microDoppler features  from ISAR data using  adaptive chirplet 

representation. 

The second area focuses on targets having highly chaotic motions. We have 

addressed a number of issues in image formation in the presence of chaotic target 

motions: 

3.1. Three-dimensional motion detection using JTF algorithm. 

3.2. 3D ISAR image reconstruction of a target with motion data. 

3.3. Application of genetic algorithms to ISAR imaging. 

Finally, we have carried out some exploratory research on two topics related to radar 

imaging and JTF analysis: 

4.1. Clutter reduction for SAR images using adaptive wavelet packet transform. 

4.2. Inverse scattering using genetic algorithms. 

The detailed descriptions of our accomplishments are discussed below. 

1.1.   Application of JTF Motion Compensation Algorithm to NATO TIRA Data. 

We have devoted considerable efforts to process the NATO TIRA radar data taken in 

Germany in November 1997. The objectives of this effort are to test our previously 

developed adaptive joint time-frequency (AJTF) algorithm [1] for ISAR motion 

compensation and to identify needed areas of research in ISAR-based target recognition. 

Our algorithm uses a search and projection technique in the joint (dwell time)-(Doppler 

frequency) plane to select and track the prominent point scatterers. The higher-order 

translation and rotation motions are then extracted and compensated for in the data to 



form a focused image of the target. The motion compensated images have been 

compared against the reference images generated by using the motion information 

available in the instrumented ARDS data. Furthermore, comparison has also been made 

with the simulated ISAR images of the air target from the radar signature prediction code 

Xpatch. A set of representative images is shown below. Figs. 1.1.1(a), (b) and (c) are the 

images for a target at azimuth=56° (0° being nose-on) generated using, respectively, 

AJTF motion compensation, ARDS sensor information and Xpatch simulation. The 

dynamic range of the displayed images is 55 dB. The look angle information was 

deciphered from the ARDS data. By comparing Figs. 1.1.1(a) and 1.1.1(b), we observe 

that the motion compensated image and the ARDS-derived reference image appear to be 

in good agreement. The Xpatch image is more focused and does not exhibit the diffused 

characteristics of the measurement data. A more detailed CAD model should improve 

the quality of the predicted image. 

While the comparison among the images is quite good, we have identified several 

needed areas of research in ISAR-based target recognition. Fig. 1.1.2 shows both the 

correlation coefficient between the JTF and truth images and that between the JTF and 

Xpatch images versus azimuth look angle. From the two curves, we see that the JTF 

images agree very well with the truth images, indicating that blind motion compensation 

is a very feasible method for processing real-world radar data. The correlation coefficient 

between the JTF and Xpatch images is slightly lower than that between the measured 

images. In particular, two problem regions can be seen from this plot. First, in the region 

near nose-on (180 degrees in azimuth), the correlation coefficient is significantly lower. 

The reason is due to the strong jet engine modulation (JEM) lines in the measured data. 

This problem is further discussed in 2.2 and an algorithm to remove JEM lines is 

proposed. Second, at some angles around the broadside region (90 degrees in azimuth), 

the correlation coefficient is also low. In this case, both the associated JTF image and the 

truth image are both found to be of low quality. After further investigation, it is found 

that the image blurring is due to the non-steadiness of the imaging plane. This problem is 

further addressed in 3.1. 



(a) Motion compensated Image using 
AJTF processing 

(b) Reference image based on ARDS 
motion data 

Fig. 1.1.1. A TIRA target at 
azimuth=56°. 

(c) Synthetic image from Xpatch 
simulation. 
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1.2.  Processing of NATO MERIC Radar Data.  We have also processed the MERIC 

radar data made available to us through the Naval Research Laboratory.   Blind motion 

compensation is more challenging in this case, as the flight path of the aircraft was very 

close to the radar and the instrument data showed more variations in azimuth and 

elevation angles during the flight of the aircraft.   The task is further complicated by the 

lack of sufficient instrument data (some of the ARDS pod data had been heavily down- 

sampled and written into Microsoft Excel form in the MERIC data set).   In addition, 

some of the radar data contain  very strong colored noise in the background and 

considerable effort was spent on denoising the data.  Despite these difficulties, the final 

JTF image quality we have generated is fairly good. Fig. 1.2.1 shows the angular motion 

parameters of an aircraft for which the radar data are available. The aircraft undergoes an 

azimuth rotation of about 25 degrees during the 17.5-sec collection period.   While there 

are 35,000 pulses of radar range profiles during this duration, only  18 samples of 

instrument data are available in the same duration. Consequently, no ground truthing was 

possible due to the lack of sufficient instrument data.   To validate our results, we have 

generated the Xpatch prediction using a CAD model purchased from viewpoint.com.   It 

is however not the exact model for the aircraft used in the measurement. The model was 

first converted into an Xpatch-compatible format. It was then edited to remove the 

landing gear and bomb loads under the wings, as well as to seal up the open seams in the 

model.  Some comparison results are presented in Fig. 1.2.2.  Figs. 1.2.2(a) and 1.2.2(b) 

show respectively the JTF motion compensated image and the Xpatch predicted image 

near point P of Fig. 1.2.1 in the flight path.  The agreement between the MERIC image 

and the Xpatch simulated image is fairly good, considering the uncertainties in the CAD 

model. Figs. 1.2.2(c) and 1.2.2(d) show respectively the JTF motion compensated image 

and the Xpatch predicted image near point Q of Fig. 1.2.1 in the flight path.   It is clear 

that the agreement is quite poor in this case.    The blind image formation is quite 

challenging during this particular portion of the flight. Furthermore, we are not certain of 

the exact imaging plane for the simulation due to the sparseness of instrument data.  An 

interesting phenomenon was observed from the motion compensated image of a second 

aircraft.   The formed images show Doppler smearing near the nose region. After some 

research on this aircraft, we have determined that it is very likely due to movement from 



a mechanically  scanned  antenna in  the  nose cone of the  aircraft.     This  topic  is 

investigated in more detail in 2.3. 
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Fig. 1.2.1. Azimuth versus elevation angles of the 
aircraft with respect to the radar during the 
flight path. 
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Fig. 1.2.2. Comparison of the MERIC image to Xpatch simulation, (a) JTF 
motion compensated image at point P. (b) Xpatch simulated 
image at point P. (c) JTF motion compensated image at point Q. 
(d) Xpatch simulated image at point Q. 



1.3.    Processing of Navy SCATR Data.    We have also processed the small craft 

(SCATR) radar data made available to us through the Naval Research Laboratory.   In 

contrast to the air data, the motion of the small boat is strongly dictated by the motion of 

the ocean surface. As a result, the radar image shows rapid variation in the imaging plane 

and the interpretation of the images becomes more challenging.  Fig. 1.3.1(a) shows the 

model of the boat.   Fig. 1.3.1(b) shows the IS AR image formed using the JTF motion 

compensation algorithm during a particular dwell duration.   The quality of the image is 

fair.  Fig. 1.3.1(c) shows the pose of the target with respect to the radar generated using 

the data recorded by the GPS sensors carried on the boat. Because the GPS data was not 

sufficient to fully determine the pose, a number of assumptions were made to generate 

the pose information. As a result, we were not fully confident that the radar data and the 

motion data have good correspondence.    Nevertheless, we proceeded to interpret the 

motion data.   It is clearly seen from Fig. 1.3.1(c) that the rotational motion of the target 

over a 3° by 6° AZ-EL angular window follows a rather chaotic path and is not well 

confined to a 2D plane.  Fig. 1.3.1(d) shows the projection of the target model into the 

corresponding imaging plane.   As we can see, during this particular (labeled in red) 

imaging interval, the image correspond approximately to the sideview of the boat. 

However, during the subsequent collection intervals, the image plane changes quite 

rapidly to other views of the target.    This issue is similar to the problem we have 

encountered in air targets.   However, it occurs much more frequently and the effect is 

much more dramatic for small boats.  Moreover, it becomes increasingly difficult to find 

a sufficiently long imaging interval even to form a decent image.   The issue of finding 

good imaging intervals will be further discussed in 3.1. 

2.1. Removal of Image Artifacts due to Helicopter Rotor Blades. It is well known 

that when rotating components exist on a target such as gimbaled antennas or propeller 

blades, image artifacts are introduced in the Doppler dimension of the IS AR image [2, 3]. 

These smeared features oftentimes overshadow the target geometrical features and hinder 

the proper interpretation of the ISAR image. We have developed a technique to remove 

such Doppler smear and produce a clear ISAR image of the target based on adaptive joint 

time-frequency processing [4, 5]. The technique entails adaptively searching for the 
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Fig. 1.3.1. Image from the SCATR data, (a) Target CAD model, (b) Image 
formed using the AJTF algorithm, (c) Target pose data determined 
from GPS data, (d) Target model projected into the corresponding 
imaging plane. 

linear chirp bases that best represent the time-frequency behavior of the signal. This is 

accomplished by projecting the signal onto all possible chirp bases and finding the one 

with the maximum projection value. After the optimal basis is found, the signal 

component associated with this basis is subtracted from the original signal. By iterating 

this search procedure, the signal can be fully parameterized with a set of chirp basis 

functions. Since the Doppler frequency due to the rotating component is both larger and 

more rapidly varying (in dwell time) than that from the target body, the signal 

components due to the fast rotating part are associated with those chirp bases having 

large displacement and slope parameters. On the other hand, the signal components 

due to the target body motion are represented by those chirp bases with relatively small 



(a) ISAR image of helicopter 
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Fig. 2.1.1. Adaptive joint time- 
frequency processing of ISAR 
imagery from a helicopter. 

(b) ISAR image after Doppler smearing 
due to rotating blades is removed 
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displacement and slope parameters. By sorting these chirp bases according to their slopes 

and displacements, the scattering due to the fast rotating part can be separated from that 

due to the target body. Consequently a cleaned ISAR image of the target body can be 

reconstructed by using only those bases associated with the body motion. Furthermore, 

robust Doppler information extraction can be achieved by applying the period detection 

algorithm to the component associated with rotating parts only. We have applied this 

algorithm to both simulated data from the radar prediction code Xpatch and some real 

measurement results for helicopters and propeller airplanes with good success. The 

measured data were provided by Dr. Victor Chen of Naval Research Laboratory. An 

example demonstrating the algorithm is shown in Fig. 2.1.1.   Fig. 2.1.1(a) shows the 



original ISAR image of a helicopter. The Doppler smearing due to the rotating blades is 

clearly visible and overlaps with the target features. Fig. 2.1.1(b) shows the image after 

the adaptive joint time-frequency feature extraction procedure is applied to remove the 

Doppler component due to the rotating blades. The Doppler smearing is significantly 

reduced and the target features become much more apparent. The removed Doppler 

smearing contains useful information on the blade rotation rate and a period detection 

algorithm can be applied to extract the rotation rate of the blades. Fig. 2.1.1(c) shows the 

autocorrelation function versus dwell time of the extracted blade contribution. From this 

plot, we can determine the periodicity of the signal to be 0.056 s. The reciprocal of the 

period is 17.7 rps and it corresponds to the product of the blade rotation rate and the 

number of blades for this target. This algorithm can also be extended to deal with jet 

engine modulation (JEM) and is discussed next. 

2.2. Removal of Image Artifacts due to Jet Engine Modulation. Jet engine 

modulation (JEM) is a well-known phenomenon caused by the high-speed rotation of the 

aircraft engine. For imaging radars, the typical PRF is much slower than the engine 

rotation frequency. Thus the resulting ISAR image in the frontal region of an aircraft 

contains an aliased component along the cross range dimension, as shown by the TIRA 

image in Fig. 2.2.1(a). Such effect is difficult to predict accurately using simulation [6, 

7]. Furthermore, JEM lines are noise-like and can corrupt the geometrical features of the 

target in the ISAR image. For ISAR-based target recognition, it would be useful to devise 

an algorithm to separate the JEM lines from the target image before the subsequent 

classification process. In 2.1, we demonstrated the separation of the rotating blade 

contribution from the body image in helicopter data. However, JEM possesses new 

challenges due to the high rotational rate of the jet engine and additional electromagnetic 

propagation effect through the inlet duct. We have carried out JEM removal on TIRA 

data using the AJTF algorithm. The model we adopt assumes that the aircraft consists of 

a slowly rotating body with a constant rotational velocity Q.b and a fast moving engine 

component with a different rotational velocity Qp. The received radar return as a function 

of dwell time can thus be written as: 



E(tD) = £4 exp[-j^-(R(tD) + xk cos(QbtD) + yk sin(QfcfD)] 
k=\ 

(2.2-1) 

+  5) 4 exp[-./ —(R(tD) + x, cos(Qpr0) + y, sin(£y 0)] 
k=Nb+l C 

where N is the total number of point scatterers within one range cell, of which Nb are the 

body scatterers. Usually Qp is much greater than Qb- While the first term can be 

meaningfully mapped into the image plane of the target via the Fourier transform the 

second term results in serious Doppler smearing across the cross range domain 

We can also utilize the AJTF technique to separate the fast moving part from the 

relatively slow moving body. For the component due to target body scattering, the 

Doppler frequency is 

fb
D = ^-Qb[ycos(QbtD) + xsm(QbtD)]=^-Qb(y + xQbtD) (2.2.2) 

c c 

while the Doppler frequency due to the fast rotating part is 

fS =^L&p[ycos(QptD) + xsm(QptD)] (2.2.3) 

We see that (2.2.2) is a linear function of dwell time while (2.2.3) is a sinusoidal 

function. If we parameterize the signal by basis functions that have linear Doppler 

frequency behavior as a function of dwell time, the two signals can be approximately 

separated by their displacement and slope parameters. We utilize the AJTF processing 

technique to carry out the parameterization. The signal component due to the target 

scattering is reconstructed by using all the bases with small displacement and small slope 

parameters. Fig. 2.2.1(b) shows the image after the JEM removal processing. Note that 

the body features are unveiled after the JEM removal. Fig. 2.2.2 shows the correlation 

between the synthetic images and the measured images from TJJRA after JEM removal. 

We observe that the correlation coefficients in the JEM region are increased after we 

remove the JEM interference from the body. Further research is needed in this area to 

more definitively assess the effect of JEM removal in the performance of target 

classification algorithms. 
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Fig. 2 .2.1. TIRA image from a frontal view, (a) Before JEM processing, 
(b) After JEM removal using the AJTF algorithm. 
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Fig. 2.2.3.   Correlation between JTF and Xpatch images 
after JEM removal. 

2.3. Extraction of MicroDoppler Features from ISAR Data Using Adaptive Chirplet 

Representation. Under the assumption of rigid body motion, traditional high-resolution 

ISAR imaging is capable of generating a (range)-(cross range) image of the target. When 



the target contains non-rigid body motion, the resulting radar image does not preserve the 

spatial features of the target. In 2.1 and 2.2, we have studied algorithms to remove the 

artifacts due to the rotating blades of a helicopter and the jet engine modulation (JEM). 

In this work, we set out to extract the so-called microDoppler features due to the small 

motions of a non-rigid target [8]. 

For this purpose, the chirplet basis function proposed in [9] is used. The radar signal 

as a function of dwell time t is expanded in terms of N basis functions as follows: 

t=i 

Each basis function is a four-parameter chirplet with time location tk, frequency center/*, 

time extent ak, and chirp rate ßk. The parameters for all the individual chirplets are found 

adaptively. The chirplet with the highest energy is extracted first. We exhaustively 

search for the maximum projection from the radar signal onto the set of basis functions in 

the parameter space. Once the best basis is identified, we then subtract its contribution 

from the radar signal and continue to search for the next best basis. This process is 

iterated until we have a good representation the original signal. 

The radar data from the Pi-walking data collected using the APY-6 radar has been 

used to test the algorithm. During the data collection, a man walked toward the radar. At 

least two different motions were present on the walking man: the steady body motion and 

the swinging arm motion. We first carry out a coarse range alignment by correlating the 

range profiles. The signal through a particular range cell is then used for JTF processing. 

Shown in Fig. 2.3.1 is the spectrogram of the radar signal in a particular range cell 

containing strong micro-Doppler. We immediately recognize the two motion components 

present in this figure. The horizontal trajectory is due to the body motion, while the 

sinusoidal curve is due to the arm swing. 

We apply the JTF extraction and extract 50 chirplets. After the parameterization, 

we separate the body and the arm returns. As can be seen in Fig. 2.3.1, the body return 

should consist of chirplet bases with both small Doppler frequency/* and small chirp rate 

ßk. By applying this criterion to the basis functions representing the signal, we can 

separate the body return from the arm return. The results are shown in Figs. 2.3.2(a) and 

2.3.2(b), respectively. Notice that the main features in the two returns are preserved after 



the JTF extraction. The Doppler features due to the arm swing shown in Fig. 2.3.2(b) is 

nearly periodic. This period can be easily estimated from the arm-only data by taking the 

autocorrelation of the time sequence. The result is shown in Fig. 2.3.3(a). The peaks in 

the autocorrelation function indicate the period of the motion and it is estimated to be 

0.44 sec. Note that without using JTF analysis, accurate detection of the swing period 

would be more difficult due to the presence of the body return. The autocorrelation 

calculated from the unfiltered data is shown in Fig. 2.3.3(b). As we can see, the peaks are 

much less prominent. 
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Fig. 2.3.1.   Spectrogram of the radar signal showing 
micro-Doppler 
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Fig. 2.3.2. Separation of the contribution from (a) the body and 
(b) the swing arm using the adaptive chirplet 
representation. 
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3.1. Three-Dimensional Motion Detection Using JTF Algorithm. One basic 

assumption of existing motion compensation algorithms is that the target only undergoes 

motion in a two-dimensional plane (i.e., it has a steady rotational axis) during the dwell 

interval needed to form an image. From several independent examinations of measured 

ISAR data sets recently, it was reported that the presence of three-dimensional motion is 

quite detrimental to the formation of a well-focused image [10-12]. This is also consistent 

with our own findings from the TIRA and MERIC data. For some image frames, we 

found that the motion compensated image and the associated truth images are both quite 

poor. An example image is shown in Fig. 3.1.1(a). When we examine the motion data 

from the aircraft instrument, we find that the aircraft motion is not confined to a two- 

dimensional plane during the imaging interval. Fig. 3.1.1(b) shows the plot of the 

elevation versus azimuth look angles of the aircraft from the radar. This curve should be 

linear if the motion is strictly two-dimensional, and in this case, there is clearly three- 

dimensional motion.   In general, we will not be able to form a focused image using an 



existing motion compensation assumption, since the assumed model is mismatched to the 

actual target motion. The ultimate goal in this research is to develop a general motion 

compensation algorithm to handle targets with arbitrary three-dimensional motion. 

However, this problem is quite challenging, if not impossible [13]. Instead, we address a 

less ambitious problem of detecting the presence of three-dimensional motion from raw 

radar data. It is hoped that the solution here will be a stepping stone to the ultimate three- 

dimensional motion compensation problem. 

Allowing for arbitrary three-dimensional motion in space, we consider the following 

model as a generalization of the two-dimensional motion model: 

E(tD)=l\exp[-J—lHxk+ylc0(tD) + zk<f>(tD))] (3.1.1) 
k=l C 

where 9 is the azimuth angle of the target with respect to the radar, and <f> is the elevation 

angle. In (3.1.1), it is assumed that the translation motion has been removed and that the 

standard small-angle, small bandwidth approximations apply. This model reduces to the 

standard two-dimensional motion model when 0 and <p are linearly related. Our 

approach to the three-dimensional motion detection problem is to utilize the AJTF 

algorithm to extract the phase behavior of the radar data at multiple range cells. It can be 

shown that when the target undergoes only two-dimensional motion during the dwell 

duration, the relationship between the phase extracted from one range cell and that from 

another range cell should be linear. For three-dimensional motion, the relationship is in 

general nonlinear. Therefore, by examining the linearity of the phase relationships from 

different range cells, we can distinguish two-dimensional motion from three-dimensional 

motion. Fig. 3.1.2 shows our results from the TIRA data. Fig. 3.1.2(a) shows the degree 

of three-dimensional motion in the data for 20 different image frames, detected by 

applying our algorithm to the raw TIRA radar data. As a reference for comparison, Fig. 

3.1.2(b) shows the degree of three-dimensional motion for the same 20 frames measured 

using the instrumentation data. It can be seen that our algorithm correctly detects where 

significant three-dimensional motions exist. We believe this detection algorithm could be 

quite useful for determining the "good" imaging intervals from which focused images can 

be more readily generated. For targets that exhibit very chaotic motions, such as ships on 



the  ocean,  finding  such   intervals  of opportunity  may   be   very  critical   for  target 

recognition. 
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3.2. 3D ISAR Image Reconstruction of a Target with Motion Data. In the previous 

topic, 3D target motion was treated as a problem for ISAR imaging in the sense that 

traditional image formation algorithm with a 2D motion model cannot accommodate the 

situation. The algorithm developed in 3.1 allows such intervals to be detected so that we 

can avoid them altogether. In fact, the presence of chaotic target motion actually provides 

an opportunity for 3D ISAR image formation, since radar data is available in a 2D 

angular aperture. In this topic, we try to devise an algorithm to form a 3D image of a 

target. We assume that the motion data of the target is known. 3D ISAR imaging is 

straightforward based on the Fourier transform of the data in the (frequency)-(azimuth)- 

(elevation) domain. However, the problem with the Fourier method is data availability. In 

practice, the available radar data is usually severely undersampled over the 2D angular 

aperture. Therefore, we apply the adaptive feature extraction (AFE) algorithm to attack 

this problem. 

The adaptive feature extraction algorithm is a model-based signal processing method 

very similar to the AJTF engine used for ISAR motion compensation. The difference is 

that we use a different class of basis functions, namely, the radar return from a point 

scatterer with unknown cross range positions but with known motion. The two 

orthogonal cross range positions are obtained by a search procedure. The strongest point 

scatterer is extracted when the projection from the radar signal onto the basis function is 

maximized. We then subtract the strongest point scatterer and iterate the process for the 

subsequent, weaker point scatterers. 

We have successfully reconstructed a 3D image of an air target from its high- 

resolution radar data using this algorithm Fig. 3.2.1 shows the motion data corresponding 

to multiple flights of the aircraft. From Fig 3.2.1, we notice that the motion data is non- 

uniformly distributed in the 5 degree by 5 degree (azimuth, elevation) window. After 

applying the 3D AFE algorithm to the available data, we achieve the results as shown in 

Fig. 3.2.2. Fig. 3.2.2(a) shows the extracted 3D image. Figs. 3.2.2(b)-(d) show the 

projected top view, side view and front view of the target, respectively. In these images, 

the fuselage, two wings and the tail structures are correctly reconstructed. Through the 

3D image formation, more features are made available than either the 2D ISAR image or 

ID range profiles. This suggests that 3D imaging is desirable for target identification 



purpose. This work also provides an important stepping stone toward the ultimate goal of 

blind 3D image formation without any motion data. 
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3.3. Application of Genetic Algorithms to ISAR Imaging. While the AJTF algorithm 

has been utilized extensively in our work, a major drawback with this method is the high 

computational complexity associated with the parameter search procedure. This problem 

becomes more acute when the order of the motion is high. We have investigated the use 

genetic algorithms (GA) [14] in the search procedure. In contrast to conventional 

optimization methods, GA is a population-based, statistical search technique. It borrows 

such concepts as inheritance and mutation from the biological evolution process. As a 

global optimization technique, GA is known to be very easy to implement and applicable 

to many design and inverse problems [15]. For our problem, the objective function is 

defined as the projection magnitude from the radar signal onto the time-frequency basis 

functions. Both real-coded and binary-coded GA have been implemented and the 

performance has been compared with results from the exhaustive search. 

Point scatterer simulations are first used to test the use of GA for ISAR motion 

compensation. Even for a simple phase estimation problem, the objective function shows 

many local maxima, implying that such problems would be challenging for gradient- 

based local optimization techniques. Fig. 3.3.1(a) shows that the resulting phases from 

both the real and binary GA agree well with the original phase function. In Fig. 3.3.1(b), 

we compare the computational complexity of GA to exhaustive search for different 

orders of motion. The exhaustive search is known to have an exponential complexity of 

0(exp(n)). As expected, the resulting computation time in logarithmic scale shows up as 

a straight line in Fig. 3.3.1(b). Also plotted in Fig. 3.3.1(b) are the numerical results from 

both binary and real-coded GA. It is observed that GA has much lower complexity than 

exhaustive search. We also found that real-coded GA consistently achieves better 

accuracy than the binary-coded GA. This is because real-coded GA has the ability to 

search for any real values within the search range. 

We have also applied GA to the NATO TIRA data. Fig. 3.3.2(a) shows the ISAR 

image from a particular time interval, along with the spectrogram of the radar signal at 

range cell 64 after third-order translation motion compensation. We see that the point 

scatterers in the image are not focused. The trajectory in the spectrogram is also tilted. 

This means that third-order motion model is not sufficient to describe the target motion. 

After fourth-order translation and rotational motion compensation, the result is shown in 



(a) (b) 

phase 

  truth phase 

+    real GA 

O    binary GA 

dwell time 

9 - - 

• ■ exhaustive      s 
7 

search     s^ 

log(time) s 

(sec) 

3 

2 

- 
0 

Number of parameters 

Fig. 3.3.1. (a) GA-estimated phase compared to the original truth phase, 
(b) Computational complexity of GA compared to exhaustive 
search as a function of the number of parameters. 

(a) 

00 120 10 10 SO 60 70 

(b) 

Fig. 3.3.2. (a) Image and spectrogram at range cell 64 using third-order 
translation motion compensation, (b) Image and spectrogram after 
fourth-order translation and rotational motion compensation. 



Fig. 3.3.2(b). We see much better-focused point scatterers in the ISAR image. The 

associated spectrogram shows a straight, horizontal trajectory. While real GA took 45 

seconds of computation time to obtain the correct phase, the computation time for fourth 

order exhaustive search is over 50 minutes. Therefore, the time savings of GA over 

exhaustive search becomes quite significant when the target exhibits highly irregular 

motion during the imaging interval. 

4.1. Clutter Reduction for SAR Images Using Adaptive Wavelet Packet Transform. 

Synthetic Aperture Radar (SAR) images of ground targets generally consist of target 

features and clutters from background scattering. In automatic target recognition (ATR) 

applications, it is desirable to remove the clutter from the target image before ATR 

processing. The standard way to suppress clutter is to apply an appropriate threshold level 

to the whole SAR image. However, this approach assumes that the target signal-to-clutter 

ratio (SCR) is large enough. Otherwise this direct threshold approach results in either 

target feature loss or remnant clutter residue. In this work, we set out to develop a 

decluttering algorithm to automatically extract the target image from a SAR image by 

maximizing the SCR using the adaptive wavelet packet transform (AWPT) [16]. The 

wavelet packet basis is a generalization of the conventional wavelet basis [17] and has 

been applied for image compression [18] and moment matrix sparsification [19]. Our 

approach is to transform the SAR image to a new domain using the wavelet packet basis. 

Since a typical target image usually consists of point scatterers and more diffused region 

features, the multi-scaled wavelet basis is well suited to focus the target image. Clutter 

image, on the other hand, is statistically uncorrelated from pixel to pixel, and the 

transformed clutter image under the same set of bases remains unfocused. Therefore, we 

expect that the SCR can be increased by transforming the original image using an 

appropriately chosen set of wavelet packet basis. The cost function of our AWPT 

algorithm is chosen to describe how well the target signal is focused in the transform 

domain. An efficient basis search algorithm is implemented to find the best wavelet 

packet basis. Our algorithm is tested using the MSTAR SAR data set [20]. Fig. 4.1.1(a) 

shows an MSTAR image in which the target is a ground vehicle and the clutter is due to 

vegetation. There are several strong point scatters in the front of the vehicle, but the 



scattering from the back part is relatively weak. Fig. 4.1.1(b) shows the result of applying 

the direct thresholding method to the image. Fig. 4.1.1(c) shows the decluttered image by 

applying the AWPT algorithm. We choose Daubechies filter with order of 6 as the 

wavelet filter. By visually comparing Figs. 4.1.1(b) and (c), we note that some crucial 

features of the target are kept in the AWPT-processed image. In both processing 

methods, there is some target information loss. Fig. 4.1.1(d) shows the signal-to-clutter 

ratio versus average target image loss for the two processing methods. It is observed that 

for a fixed target image loss the AWPT method always achieves a higher SCR value than 

the direct thresholding method. Similar results are obtained when the algorithm is applied 

to other MSTAR targets. 

Fig. 4.1.1(a). SAR image of a ground 
vehicle with clutter. 

Fig. 4.1.1 (b). Clutter rejection using 
the direct thresholding method. 

Fig. 4.1.1(c). Clutter rejection using 
the AWPT approach. 
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Fig. 4.1.1(d). SCR vs. target image 
loss for the two processing methods. 



4.2. Inverse Scattering Using Genetic Algorithms. As an extension of our research 

into radar imaging and GA, we have also carried out an exploratory study on applying 

GA in conjunction with a computational electromagnetics (CEM) solver to image targets 

with strong multiple scattering effects. Although this is not directly related to the JTF 

framework, radar imaging can be considered as an approximate, linearized version of the 

general inverse scattering problem. Therefore, our inverse scattering work provides us 

with more physical insights into the radar imaging problem. It is well recognized that 

traditional imaging algorithms suffer from resolution limitation and image artifacts due to 

multiple scattering phenomena. Rigorously solving the electromagnetic inverse scattering 

problem, on the other hand, is much more challenging. In this work, we use GA together 

with a CEM solver to attack the two-dimensional inverse scattering problem. The method 

of moements (MoM) is used for the forward scattering computation, while GA is used as 

a search engine to minimize the difference between the measured data and the computed 

scattered fields from each candidate shape. We use the binary bitmap approach to 

discretize the search space. To constrain the problem, a geometrical median filter is 

applied to create more realizable shapes. 

We have applied our algorithm to actual measurement data from the public Ipswich 

data set. Fig. 4.2.1(a) shows the shape and size of three metallic Ipswich objects selected 

for inversion, namely, the triangular cylinder, the dihedral and the circular cavity. They 

are labeled as Ips009, Ips004 and IpsOll, respectively. We first tested the inversion 

algorithm using MoM-simulated field data as the input. The search area was chosen to be 

15cmxl5cm for Ips004 and 12cmxl2cm for Ips009 and IpsOll. The number of cells 

within this area was set to 20x20. The reconstructed results in Fig. 4.2.1(b) show the final 

inverted shapes of the three objects. We observe that the final shapes are in fairly good 

agreement with the real shapes. The dihedral and the circular cavity contain strong 

multiple scattering and yet their inverted shapes closely resemble the correct objects. 

Results for these targets were also generated using the traditional imaging method and 

they showed strong image artifacts due to multiple scattering. 

Next, we applied the inversion algorithm to the actual measured data. Fig. 4.2.1(c) 

shows the final reconstruction shapes. As we can see, the inverted shape is good for the 

triangular cylinder, which has no multiple scattering effects. For the dihedral, the 



reconstructed shape is not continuous, but is quite similar to the real object. The circular 

cavity shows the most discrepancy with the real shape. The exterior and the opening of 

the cavity are correctly inverted, while the interior part of the cavity shape is not as 

satisfactory. Future work on this topic should be focused on finding ways to cut down the 

computational load such that this method can be extended to deal with realistic 3D 

targets. To accelerate the GA process, better geometry constraints should be applied. In 

addition, the use of an approximate CEM solver such as Xpatch should be investigated to 

handle large 3D targets. 
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C. FOLLOW-UP STATEMENT: 

In the past three years, we have processed a number of measurement data sets and 

have identified several important fundamental problems in radar imaging. We have also 

developed a number of JTF-based algorithms to address these problems. We are currently 

investigating the microDoppler phenomenon, which arises in targets that violate the rigid 

body model of scattering. MicroDoppler can arise in situations where moving 

components (e.g., rotating antennas, spinning rotor blades) exist on a target, or when the 

target undergoes strong flexing and vibration due to motion dynamics. We have 

processed the "PI walking" data from the Navy APY-6 radar. We plan to continue this 

effort in a new proposed program to apply JTF techniques for analyzing and extracting 

microDoppler features and to utilize such information to improve ATR performance. 
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Abstract—In this paper, three-dimensional (3D) inverse synthetic 
aperture radar (ISAR) image reconstruction with known motion data 
is studied. In traditional two-dimensional (2D) ISAR imaging, a 
2D point scatterer model is adequate to consider the target rotation 
motion with a fixed rotational axis. However, target motions with a 
varying rotational axis are sometimes encountered in real situations. 
Under such cases, the use of a 3D point scatterer model is necessary 
for 3D ISAR image reconstruction. An adaptive feature extraction 
algorithm is proposed to reconstruct the 3D image of a target with 
non-uniformly undersampled radar data over the azimuth and elevation 
aperture. Simulation results based on actual motion data of air targets 
demonstrate the effectiveness of the algorithm. 
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1. INTRODUCTION 

Li and Ling 

Inverse synthetic aperture radar (ISAR) has been identified as an 
effective tool for target recognition [1, 2]. In the ISAR problem, the 
radar is stationary and collects back-scattering data from a moving 
target. The geometry of such a problem is shown in Figure 1, where 
the target rotates with azimuth angle <p and elevation angle 6 and the 
x-axis is the radar line of sight (LOS). In traditional ISAR imaging, 
we assume that the target rotates with a fixed rotational axis during 
the image formation interval. This motion is termed two-dimensional 
(2D) motion, since the target motion is confined to a 2D plane. Under 
this case, only 2D ISAR images can be obtained. 

Figure 1. Geometry of an ISAR imaging problem. 

When the target has a varying rotational axis during the imaging 
interval, the target motion is termed three-dimensional (3D) motion. 
This can occur on a maneuvering target. Three examples of 3D target 
motion are shown in Figure 2. Figure 2(a) shows a slight deviation 
from a 2D motion. This can occur when an aircraft undergoes a 
well-controlled maneuver during the imaging interval [3]. Figure 2(b) 
shows a severe wave-like 3D motion. This kind of motion is typical of 
ship targets due to ocean wave modulation [4]. Figure 2(c) shows the 
target motion data from multiple flight paths. Although each flight 
path obeys 2D motion, the cumulative data over the angular aperture 
appear to be 3D. 
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Figure 2. Possible 3D motions encountered in real ISAR data 
collection, (a) Slight 3D motion deviating from 2D motion, (b) Severe 
wave-like 3D motion, (c) Multiple flight paths of 2D motion. 

For the standard 2D ISAR imaging problem, 3D motion of a 
target is considered undesirable and its detrimental effect on the 2D 
ISAR imaging result has been analyzed in [5]. To date, there is no 
good method to deal with how to image in the presence of unknown 
3D motion [6]. However, when the motion data is known, there is 
an opportunity to produce a 3D image. With the known motion 
data, the collected radar data is available in the (frequency)-(azimuth)- 
(elevation) domain. Based on the 3D point scatterer model, 3D ISAR 
imaging is straightforward based on the Fourier transform. 

The problem for 3D ISAR image formation with the Fourier 
transform is data availability. Governed by the Nyquist sampling 
theorem, the Fourier transform method requires data that is dense 
enough in the angular aperture. By examining Figure 2, it is clear 
that the available radar data in practice are severely undersampled over 
the 2D angular aperture. This makes the Fourier transform method 
unsuitable for the 3D ISAR imaging problem. 

In this paper, we set out to reconstruct the 3D ISAR image of a 
target assuming the 3D motion of the target is known. Similar topics 
have been reported in [7-9]. In [7], a mosaic 3D image is produced from 
many 2D images formed using a super-resolution algorithm. In [8], the 
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target height is reconstructed using multiple cuts of elevation data. 
In [9], a relaxation-based algorithm is used to address the so-called 
curvilinear SAR problem. 

Our approach is to use an adaptive feature extraction algorithm 
based on a general 3D point scatterer model. It is an extension of our 
previous work in [10], where only 2D motion is considered. Here, we 
consider both the case of severe and slight 3D motions. When there is 
severe 3D motion of the target, our goal is to form a 3D ISAR image. 
When there is only slight 3D motion that deviates from 2D motion, 
our goal is to achieve a better 2D ISAR image. 

This paper is organized as follows. In Section 2, the 3D point 
scatterer model is introduced to account for 3D target motion. The 
adaptive feature extraction algorithm is then described in Section 3. In 
Section 4, we show the advantages of this algorithm with some simple 
point scatterer simulations and discuss the limitations of the algorithm. 
We then apply the algorithm to reconstruct 3D images of an aircraft 
from realistic ISAR motion data. Conclusions are given in the final 
section. 

2. 3D POINT SCATTERER MODEL 

A 2D point scatterer model is usually used in traditional ISAR imaging 
[1, 2]. In this model, the target consists of ideal point scatterers. After 
range compression, the radar data can be expressed as 

E{tD) = £ a exp \-j^[Xi + yMtD)]) (1) 
i=i <■        c J 

where /o is the radar center frequency and to is the dwell time, x and 
y represent the target range and cross-range positions, respectively. 
The target is assumed to consist of N3 point scatterers, with the ith 

point scatterer depicted by position (xi, j/j) and strength CTJ. 
The above model is valid only if the target rotational motion is 

confined to a 2D plane and can thus be described in terms of only one 
angular parameter <p. When there is 3D motion of the target, a more 
general 3D model is required: 

E{tD) = f> exp \-j^-[xi + yMtD) + Zi9{tD))\ (2) 

In the above expression, a third coordinate z of the target is included 
to represent the third dimension of the target and another independent 
angular motion parameter 0 is introduced to describe the 3D motion. 
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If we know the target angular motion parameters (9, $) as a 
function of dwell time, then the radar data is actually in the (azimuth)- 
(elevation) domain. Therefore, we can rewrite equation (2) as 

E(v,0) = E*iexp{-j—[Xi + y^ + zifl]} (3) 
i=i l        c } 

Based on (3), we can see that if both 9 and ip are evenly sampled over 
the 2D angular aperture, we can use a 2D fast Fourier transform with 
respect to 9 and (p to form a 3D radar image in the range x and cross 
ranges y and z domain. If the data is unevenly sampled yet dense 
enough, we can still use the Fourier transform to process the radar 
data. However, when the available data is highly undersampled as 
those shown in Figure 2, the Fourier transform method will not produce 
any meaningful results. To overcome the undersampling problem, the 
so-called adaptive feature extraction algorithm is proposed in the next 
section. 

3. ADAPTIVE FEATURE EXTRACTION ALGORITHM 

Adaptive feature extraction (AFE) is a model-based signal processing 
method that has been used in a previous work for 2D ISAR imaging 
[10]. It is similar to CLEAN [11] and the matching pursuit algorithm 
[12]. After range alignment, we assume that the range position is 
resolved via range compression. The two cross range dimensions are 
obtained by applying AFE based on the 3D point scatterer model to the 
radar data within a range bin. The basic idea is to extract the strongest 
point scatterer first. Then the response from this point scatterer is 
subtracted from the total signal. The process is then iterated for the 
remaining point scatterers. 

Within a particular range bin, for every possible point scatterer 
position (y, z), we construct a basis function as the radar signal from a 
unit point scatterer located at position (y, z) using the model depicted 
in (3) 

h^^e-J^lvKtDHze«»)] (4) 

To find the strongest point scatterer within the range cell, we search 
for the basis function that gives rise to the maximum projection from 
the radar data £7(£D) onto the basis. That is, we can find the position 
of the strongest point scatterer (ym, Zm) as 

{ym, zm} = arg max |< E{tD), h(tD) >| (5) 
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where the projection is defined as 

<E(tD),h(tD)>= f E{tD)h*(tD)dtD (6) 

After we find the position of the strongest point scatterer, the strength 
am of that point scatterer is simply the projection from the radar data 
onto the chosen basis function: 

<rm =< E(tD), e-^{ym<P(tD)+zme(tD)] > (7) 

Once we have found the contribution from the strongest point scatterer 
to the radar signal, it is denoted as 

Em = ame-^^+^ (8) 

We then subtract Em from E to find the residual signal: 

Em+i = E — Em (9) 

Finally, this process is iterated to find the subsequent point scatterers 
one at a time until the energy of the residual signal falls below a preset 
threshold. 

To summarize, the steps in the adaptive feature extraction 
algorithm are as follows: 

Step 1. Set up the searching space for both y and z. 
Step 2. Search for maximum projection from the present signal 

onto the searching space. The two cross range positions and the 
strength of the strongest point scatterer within the range bin are 
determined. 

Step 3. Remove the response of the point scatterer from the radar 
signal. 

Step 4. Repeat steps 2 and 3 until the energy of the residual signal 
falls below a predefined threshold. 

Step 5. Repeat the above procedures for other range bins. 

For this work, the exhaustive search method is used in step 2. 
It is guaranteed to produce a global maximum for the projection. To 
further save computation time, we have also explored the use of genetic 
algorithm instead of the exhaustive search for more efficient global 
optimization [13]. 

4. RESULTS 

To demonstrate the use of AFE for ISAR image formation of a target 
with 3D motion, we first compare the result against that from the 
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Figure 3.  Original 9 point scatterers within in one range cell,  (a) 
(y, z) distribution, (b) y projection, (c) z projection. 

Fourier transform. We then study the resolution and noise sensitivity 
of the algorithm. After establishing the advantages and limitations of 
the AFE algorithm, we reconstruct 3D images from some simulated 
radar data based on real motion data from an air target. 

4.1. Testing on the AFE Algorithm 

To test the algorithm, we consider radar data from a fixed range cell 
and study how to resolve the two cross range dimensions using AFE. A 
target consisting of nine point scatterers of equal strength in the (y, z) 
plane at a fixed range is shown in Figure 3(a). The two projections of 
the point scatterers along the y and the z axes are shown in Figures 
3(b) and 3(c) respectively. With the point scatterer model and assumed 
3D motion, we generate simulated radar data based on equation (2). 
The center frequency is 10 GHz and the bandwidth is 1 GHz in our 
simulation. We then apply the AFE algorithm to the simulated radax 
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Figure 4. Reconstruction result using AFE. (a) Motion data in a 
3 deg by 3 deg aperture, (b) (y, z) image, (c) y projection, (d) z 
projection. 

data. 
The first case considered is severe 3D motion as shown by the 

azimuth-elevation data in Figure 4(a). In this figure, 256 data points 
over a 3-degree azimuth by 3-degree elevation aperture are randomly 
distributed. The AFE reconstructed image in the (y, z) plane is 
illustrated in Figure 4(b). The two projections along the y and the 
z axes are shown in Figures 4(c) and 4(d) respectively. We can see 
that they agree well with the reference images in Figures 3(a)-3(c). 
The small errors are due to finite position resolution in the searching 
space. 

Next, we generate the image via the Fourier transform. The result 
of the (y, z) image is shown in Figure 5. It is obtained by a brute- 
force Fourier transform over the non-uniform angular aperture. The 
sidelobes are so high that the positions of the point scatterers cannot 
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Figure 5.   Reconstruction result using the Fourier transform,   (a) 
(y, z) image, (b) y projection, (c) z projection. 

be easily recognized in the (y, z) image or the two projections. This 
is due to the large aliasing effect associated with the undersampled 
data. The Nyquist sampling in angle is about 0.07 degree, while the 
actual average sampling of the data is about 0.19 degree. We cannot 
expect a good image to be obtained by the Fourier transform method. 
Therefore, AFE is a much better choice than the Fourier transform to 
process the undersampled radar data at hand. 

The second case considered is slight 3D motion as shown in Figure 
6(a). The motion parameters in this figure are taken from the real 
motion data of an in-flight aircraft. The azimuth and elevation angles 
are obtained through coordinate transformation of the original roll, 
yaw and pitch motions of an instrumented aircraft. As we can see, 
there is a slight 3D motion that deviates from the idealized 2D motion, 
which should be a line in the 6-<p aperture. In this case, we apply AFE 
based on both the correct 3D motion model in (2) and the approximate 
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Figure 6. AFE reconstruction from data with a slight 3D motion, (a) 
Motion data, (b) (y, z) image, (c) y projection, (d) z projection. 

2D motion model in (1). In the former case, the AFE search is over the 
(y, z) space, while in the latter case, the search is a one-dimensional 
one over the y dimension only. Figure 6(b) shows the (y, z) image 
resulting from the 3D motion model. The two projections along the y 
and the z axes are shown in Figures 6(c) and 6(d). At first glance, the 
image in Figure 6(b) does not look like the original image in Figure 3(a) 
at all. However, we can see that the y projection in Figure 6(c) agrees 
fairly well with the original y projection in Figure 3(b). On the other 
hand, the z projection in Figure 6(d) is very different from the original 
z projection in Figure 3(c). The reason for the poor performance is 
that the variation in ip is only one-fifth of the variation in 6, which 
makes the image resolution in z much lower than the image resolution 
in y. The resolution of the AFE algorithm will be discussed in more 
detail in 4.2. 

Figure 7 shows the AFE result based on the 2D motion model. 
Only the y projection is available from the one-dimensional AFE 
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Figure 7.   AFE reconstruction from data with a slight 3D motion 
based on a 2D motion model. 

search. The y positions from this figure do not reflect the true y 
positions of the 9 point scatterers shown in Figure 3(b). The mistake 
here is due to model mismatch. Although the variation in the elevation 
angle 9 is only one-fifth of the variation in the azimuth angle ip, this 
slight 3D motion cannot be ignored in processing the radar data. 
Therefore, the full 3D motion model in conjunction with the AFE 
algorithm is needed for image formation in the presence of 3D motions. 

4.2. Resolution and Sensitivity of the AFE Algorithm 

As we saw in the last section, even though the AFE algorithm can 
overcome the undersamphng problem, the resulting image resolution 
is still controlled by the aperture size. To further illustrate this, the 3 
degree by 3 degree aperture in Figure 4(a) is scaled to a 0.3 degree by 3 
degree aperture in Figure 8(a), while still populating the aperture with 
256 data samples. The same 9 point scatterers and radar parameters 
are used to simulate the radar data. Only the motion data is different. 
The AFE reconstruction results are shown in Figures 8(b)-8(d). As 
we can see by comparing Figures 8 to 3, the image resolution in the 
y direction remains essentially unchanged, while the image resolution 
in the z dimension gets much worse. Therefore, the AFE resolution 
in position is inversely proportional to the angular aperture. This is 
exactly the same as the Fourier transform. 

Like many other model-based signal processing techniques, the 
adaptive feature extraction algorithm is sensitive to data error. We 
study the algorithm sensitivity by adding some noise to the data. 
Two types of errors are considered. The first is the radar data error. 
Figure 9(a) shows the reconstructed image when the radar data is 
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Figure 8. Reconstruction result using AFE. (a) Motion data in a 3 
deg by 0.3 deg aperture, (b) (y, z) image, (c) y projection, (d) z 
projection. 

Figure 9. Reconstruction using noisy data,  (a) —20 dB white noise 
in the radar data, (b) 1% randomness in the angular positions. 
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Figure 10. Point scatterer representation of an aircraft, (a) 3D point 
scatterer representation, (b) Top view, (c) Side view, (d) Front view. 

contaminated with —20 dB of white noise. The second source of error 
is the motion parameter error. Figure 9(b) shows that the result with 
1% random error in the motion parameters. Our experience shows 
that the algorithm is more sensitive to error in the motion parameters 
than that in the radar data. To alleviate the angular motion error, we 
suggest preprocessing the motion data according to a priori knowledge 
of the motion. For example, we can limit the motion data to low- 
order polynomial functions of dwell time if we believe the motion of 
the target is smooth. 

4.3. Aircraft Imaging with Real 3D Motion Data 

A full simulation is done with point scatterers from an aircraft model. 
401-point scatterers with equal strength are used to model our example 
aircraft as shown in Figure 10(a). The three projections of the original 
target corresponding to the top view, side view, and front view of 
the aircraft are shown in Figures 10(b)-10(d). The 3D motion data 
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Figure 11. 3D motion data from an air target. 

(a) 

Figure 12. 3D image reconstructed by AFE based on the 3D motion 
model, (a) 3D view of the top 600 extracted point scatterers (b) Top 
view, (c) Side view, (d) Front view. 
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in Figure 11 shows a 5 degree by 5 degree angular window in both 
azimuth and elevation. They are from the actual flight paths of an 
aircraft. To simulate the radar data, the same radar parameters in 
the previous examples are used. Our goal is to reconstruct a 3D 
image from the range profiles simulated at these angles. Again, the 
highly non-uniform, undersampled distribution of the radar data in 
the angular aperture requires the use of the 3D motion model and the 
AFE algorithm in order to reconstruct a 3D image. 

For 3D image construction, we need to find the positions and 
strengths of the point scatterers in 3D space. The range location x3 
is directly obtained from the range profiles. Then for every range cell 
within the range profile, a collection of point scatterers with two cross- 
range locations (ys, za) and point scatterer strength <js are extracted 
from the AFE iterations. The computation time is about 15 minutes 
on a PC with a P III 750 MHz processor. The result is an image 
<T3(X3, ys, za), representing the scattering strength of scatterers in 3D 
space. We sort the scatterers according to their strengths and keep the 
top 600 point scatterers. The positions of those point scatterers are 
shown in Figure 12(a). The top view, side view, and front view of the 
reconstructed 3D image are shown in Figures 12(b)-12(d), respectively. 
They agree very well with the three projections from the original 3D 
point scatterers in Figure 10. Such features as the fuselage, the wings, 
and the vertical tail fin are correctly constructed. Our algorithm has 
also been tested on real radar data of an air target. 

5. CONCLUSIONS 

The problem of 3D ISAR imaging of a target with known motion 
data is discussed in this paper. The 3D motion model is necessary to 
form a 3D image of the target with 3D motion. The adaptive feature 
extraction algorithm along with the 3D motion model is proposed to 
process non-uniform, undersampled radar data collected over a 2D 
angular aperture. The advantages of the AFE algorithm are clearly 
demonstrated when compared to either the Fourier transform or the 
AFE based on 2D motion model. We find that the resolution of the 
AFE image is limited by the aperture size in the corresponding motion 
direction. The sensitivity of the method is also discussed. Simulation 
with a 3D point scatterer model of an aircraft shows that the resulting 
3D images carry much more information than the range profiles or the 
2D ISAR images alone. One advantage of the algorithm is that the 
data collection scheme is very flexible. Therefore, it is a viable tool for 
target feature extraction when the 3D motion data associated with the 
target are available. 
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The significance of this work is twofold. First, when there is 
known target motion, 3D motion is taken into account based on the 
3D motion model. It is not treated as an error term as in traditional 
2D ISAR imaging. Second, when there is unknown target motion, this 
work provides us with an intermediate step toward blind 3D ISAR 
image formation. Instead of doing the more challenging 3D motion 
compensation directly, we might first estimate the 3D motion from the 
radar data. We can then use this method to form a 3D image. 
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Abstract. We present an algorithm to detect the presence of 3D target motion from 

ISAR data. Based on the 3D point scatterer model, we first examine the effect of 3D 

motion on ISAR imaging. It is shown that existing motion compensation algorithms 

cannot properly focus targets exhibiting 3D motion during the imaging interval. An 

algorithm is then derived to blindly detect the degree of 3D target motion from raw radar 

data. It is based on measuring the linearity of phases between two or more point scatterers 

on the target. The phase estimation is implemented using the adaptive joint time- 

frequency technique. Examples are provided to demonstrate the effectiveness of the 3D 

motion detection algorithm with both simulation and real ISAR data. The detection 

results are corroborated with the truth motion data from on-board motion sensors and 

correlated with the resulting ISAR images. 
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1. Introduction 

High-resolution inverse synthetic aperture radar (ISAR) imaging is regarded as an 

effective tool in automatic target recognition [1-2]. Ideally, the desired target motion is 

uniform rotation without translational motion, under which a two-dimensional (2D) 

Fourier transform brings the radar data in the (frequency)-(dwell time) domain into the 

(range)-(Doppler frequency) domain. Otherwise, motion compensation is needed as an 

intermediate step to form a focused ISAR image. 

Since target motion can always be decomposed into translational motion and 

rotational motion, a typical motion compensation algorithm consists of two steps. First, a 

point on the target is focused through translational motion compensation. When there is 

non-uniform rotational motion, other points on the target are not necessarily focused. 

Rotational motion compensation is then applied to focus these other points. Existing 

motion compensation algorithms usually assume that the rotational motion of a target is 

confined to a 2D plane during the dwell duration [1-7]. We shall use the term 2D motion 

to refer to target rotational motion of this type. Under the 2D motion assumption, 

rotational compensation of a second point on the target will focus the whole target. 

When there is 3D motion, i.e., when the rotational motion is not confined to a 2D plane, 

rotational compensation of a second point cannot focus the whole target. 

Recently, several independent research groups have reported that, for aircraft 

undergoing fast maneuvers or ships on rough seas, the motion of a target may be highly 

chaotic and does not always obey the 2D motion model [8-10]. As a result, the image 

formed using the standard motion compensation algorithms is blurred. In [8] and [9], the 

effect of 3D motion on ISAR imaging is discussed. However, target motions are assumed 



to be known from other auxiliary sensor data that are usually not accessible in real 

operational environment. In [10], the imaging interval is adaptively chosen based on the 

resolved target feature in the radar image to overcome the 3D motion issue. It requires 

sound knowledge of the target under consideration, which is often not known to the end 

users of IS AR data. 

The objective of this paper is to develop an algorithm to detect the presence of 3D 

motions during the imaging interval from IS AR data. Based on the 3D point scatterer 

model, we first examine the effect of 3D motion on existing imaging algorithms. We then 

develop an algorithm to blindly detect the existence of 3D motion. For this purpose, only 

the estimation of phases of several prominent point scatterers is needed. It can be 

accomplished by the joint time-frequency analysis [6]. With the detection algorithm, we 

have the ability to distinguish the time intervals when the target undergoes smooth 2D 

motion from those containing more chaotic 3D motion. As a result, the good imaging 

intervals where focused images are more easily formed can be automatically determined. 

The paper is organized as follows. First, the ISAR imaging problem is formulated 

in terms of a point scatterer model in Section 2. In Section 3, the 2D motion assumption 

in existing motion compensation algorithms is analyzed. We show the reason why 3D 

motion is a problem for ISAR imaging. Section 4 discusses the 3D motion detection 

algorithm in detail. Examples from both simulation and measurement data are presented 

in Section 5. The conclusions are given in the last section. 

2. 2D and 3D Motion Models 

The standard model used in ISAR processing is the point scatterer model given as 



E(f,tD) = J\(Ti(xi,yi)exv{-j-^-[r(tD) + xi + yi(p(tD)]} (1) 
& c 

where/is the radar frequency and tD is the dwell time. The radar echo data E(f,tD) is in 

the (frequency)-(dwell time) domain, x and y represent the target range and cross-range 

positions, respectively. The target consists of Ns point scatterers, with the il   point 

scatterer depicted by position (x,,v,) and strength o(x,-,y,). The target motion includes both 

the translational motion described by r(tD) and the rotational motion described by <p(tD). 

When there is no translational motion and the rotational motion is uniform, it is seen that 

a 2D Fourier transform brings the radar data E(f,tD) into a radar image o(x,y). Otherwise, 

motion compensation is a critical step in ISAR imaging. 

The above model is what we call a 2D problem since the target rotational motion 

is confined to a 2D plane and describable in terms of only one angular parameter (p. 

When there is 3D motion of the target, a more general 3D model is required: 

Ä Ajrf 
E(f,tD) = Y<Ti(xi,yi,zi)exv{-J — [r(tD) + xi + yi<p(tD) + zi0(tD)]} (2) 

M c 

In the above expression, a third coordinate z of the target is included to represent the 3D 

target and another independent angular motion parameter 6 is introduced to describe the 

3D rotational motion (see Fig. 1). It is possible to perform 3D target imaging if the target 

motion is known exactly [11], [12]. In practical ISAR scenarios, however, we have no 

access to the target motion. Our objectives here are to examine the effect of 3D motion 

on ISAR imaging and devise an algorithm to detect the presence of 3D motion from the 

radar data itself, i.e., without any additional knowledge of the target motion. 



3. Problem of Existing Motion Compensation Algorithms with 3D Target Motion 

First, we show that the more general 3D model degenerates into the 2D model 

under two conditions. The first case is when there is a linear relationship between (p and 

0, i.e., 

6{tD) = b(p(tD) (3) 

This allows us to cast equation (2) into the form 

£(/^D) = £ö,,-UI-.3'l-,z,-)expW^-[r(rD) + xl.+(yI.+feI.)^D)]} (4) 
M c 

Comparing (4) with (1), we see that if we define y • = y, + bzi, then the rotational motion 

is in fact a two-dimensional one and the resulting 2D image a{ xt, yt) is the projection 

from the 3D target cr( xt, y,-, Z[ ) onto the 2D motion plane. 

The second case is when the z dimension of the target is so small that the third 

phase term in (2) can be neglected. For example, suppose a radar operates at a frequency 

of 10 GHz and the 6 variation is limited to 0.5 degree. If the target thickness in the z- 

dimension is less than 0.2 m, then the third phase term is less than 7t/4 and the 2D model 

is adequate. 

From the above consideration, we see that the 2D model is applicable if either the 

rotational motion is 2D or the target is of 2D in extent. When there exists 3D motion on a 

full 3D target, any motion compensation algorithms based on the 2D model is not 

expected to focus the target well. We will now examine this issue in more detail. Since 

the translational motion compensation is independent of the models in (1) and (2), only 

the rotational motion compensation needs to be investigated. With 2D rotational motion 

present, the phase of a point scatterer i due to the rotational motion is 



Pi(tD) = yi<p(tD) & 

Here, the constant 4nf/c has been suppressed for simplicity. As we can see from (5), the 

phases of all the point scatterers are linearly related to each other (through the ratio of 

their cross range positions). If we make one of the phases a linear function of time, then 

all the phases are linearized simultaneously, and the whole target can be focused after the 

Fourier transform. This is the basis of most 2D rotational motion compensation 

algorithms based on the point scatterer model [3-6]. This concept is illustrated in Figure 

3. Figure 3(a) shows the phase functions of two point scatterers under 2D rotational 

motion. Figure 3(b) shows that both points can be made linear functions of time after we 

force one of them to be a linear function. 

With 3D motion, the phase of a point scatterer due to the rotational motion is 

Pi{tD) = yi(P{tD) + zid{tD) (6) 

In this case, the phases of the point scatterers are no longer linearly related. If we make 

one of the phases a linear function of time, the phases of the other point scatterers are not 

automatically made linear functions of time, as was the case of 2D motion. Figure 3(c) 

shows the phase functions of two point scatterers with 3D motion. As we can see from 

Figure 3(d), after one point is forced to be of linear phase, the phase of the other point 

remains nonlinear. 

Figure 4 illustrates some simulation results of the effect of the rotational motion 

compensation based on the model in (1) on the final images under 2D and 3D target 

motion. The adaptive joint time-frequency (AJTF) algorithm reported in [6] is used for 

motion compensation. Ten points in 3D space are used to simulate the radar data. Figure 

4(a) shows an assumed 2D rotational motion. Figure 4(b) shows the image after the 



translational motion compensation. The image shows one point being focused in range 

cell 25 while other points are unfocused due to the rotational motion. Figure 4(c) shows 

the image after the 2D rotational motion compensation in which a point scatterer in range 

cell 57 is selected for focusing. All the point scatterers are focused in the image. The 

situation with an assumed 3D target motion is shown in Figures 4(d)-4(f). Figure 4(d) 

shows the assumed 3D motion. Figure 4(e) shows the image after translational motion 

compensation. Figure 4(f) shows the final image after the 2D rotational motion 

compensation. The two points in range cells 25 and 57 are focused, as expected. Another 

point scatterer in range cell 99 is also focused as it happens to be in the same 2D motion 

plane as the point scatterer in range cell 57. As we can see, it is not possible to focus all 

the points simultaneously with an existing algorithm based on the 2D motion model. 

4. 3D Motion Detection Algorithm 

Since existing motion compensation algorithms cannot handle 3D target motion, 

it is desirable to develop a general compensation algorithm that can accommodate 3D 

motion. However, this is a difficult task (see [13] for background on this problem) and 

outside the scope of this work. Our goal here is to develop an algorithm to detect the 

presence of 3D motion from radar data. If we can reliably detect those time intervals 

where 2D target motions are predominant, we can use the existing 2D motion 

compensation algorithms to form well-focused ISAR images. 

As discussed in the last section, 2D motion can be represented by a linear 

relationship between 6 and (p. Therefore, we set out to detect the existence of a nonlinear 



relationship between 6 and (p in our 3D motion detection algorithm. First, we write the 

relationship between 6 and. ^into a linear and a nonlinear part as follows: 

6{tD) = b(p{tD) + m{tD) (7) 

where b is the linear constant and m(tD) is the nonlinear part which indicates deviation 

from 2D target motion, or the degree of 3D motion. Next we try to gather target motion 

information by analyzing the phases of two point scatterers on the target. Let us write the 

relationship between the phase functions Pi and P2 of two point scatterers as: 

P2(tD) = aPl(tD) + n(tD) (8) 

The relationship is again decomposed into the linear part, where a is the linear constant, 

and the nonlinear part n(tD). Our goal is to derive a relationship between m(tD) and n(tD) 

so that the presence of m can be detected by observing n. 

After the standard translational motion compensation, the time-varying phase of a 

point scatter is in the form of 

Pi(tD) = Ayi<p(tD) + Azi9(tD) (9) 

where Ay, and Azi are differential positions of point scatterer / relative to the reference 

point chosen during translational motion compensation. Substituting (7) into (9) and then 

evaluating (9) at point scatterers 1 and 2, we have 

P,(f0) = (Ay, +bAzl)<p(tD) + Azlm(tD) (10a> 

P2(tD) = (Ay2 + bAz2)<p(tD) + Az2m(tD) (10b) 

We next substitute (10) into (8), which leads to 

a[( Ay, + bAzx )<p(t D) + Az,m(f D)] + n(tD) = (Ay2 + bAz2 )<p(tD) + Az2m(tD)     (11) 



Notice that if there is only 2D motion, then the phases of the two point scatterers must be 

linear. This means if m=0, then n=0. By using this fact and equating the coefficients of 

<p( tD ) in (11), the constant a can be derived: 

a = Ay2+bAz2 (12) 

Ay, + Mz, 

By substituting (12) into (11), we finally arrive at 

^'T^TV*-' (13) 
Az2Ay, - Ay2Az, 

Equation (13) states that once the nonlinear phase term n is known, it is proportional to 

nonlinear motion m. Therefore, the steps to determine the degree of 3D target motion are 

as follows. First, we extract the phases of two point scatterers from the radar data. Next 

we find the nonlinear phase function n using a minimum least squares fit of equation (8). 

Once n is known, we use equation (13) to decide on the degree of 3D motion. The 

remaining issues are: (i) how to determine the phase functions of the point scatterers, (ii) 

how to define the degree of nonlinearity and the degree of 3D motion once n is known, 

and (iii) how to compare the degree of 3D motion from one imaging interval to another. 

These three issues are discussed in the following subsections. 

4.1. Phase Estimation Using Adaptive Joint Time-Frequency Projection 

After the translational motion compensation, the radar signal contains only 

rotational motion. To estimate the phase of a prominent point scatterer, we utilize the 

adaptive joint time-frequency (AJTF) projection technique discussed in [6]. We begin 

with the radar data in the (range)-(dwell time) domain. Within a fixed range cell, the data 

can be written as 



Es(tD) = YjaiexV(-j^(yi(P(tD) + Zi0{tD)) (14) 
M c 

where fc is the center frequency. Among the Nr point scatterers within the range cell, we 

express the phase behavior of the strongest one as a polynomial function: 

4>M = {fxt + f2t
1 + f/+..) <15a) 

and consider 

h(t) = exp[-j<pM(tD)] (15b) 

as a basis for the radar signal. The phase parameters are then found by searching for the 

maximum projection from the radar signal onto the basis function: 

</„/2,/3,...>=argmaxl \E{tD)h\tD)dtD I (16) 

Equation (16) means that the phase function parameters are estimated to give a maximum 

projection from the radar data onto the basis function for that prominent point scatterer. 

In the search procedure, the first term /} can be obtained by using the fast Fourier 

transform, while all other higher order terms f2, /?, ... are obtained using exhaustive 

search. Figure 5 illustrates the process of AJTF phase estimation. Figure 5(a) shows the 

radar signal in one range cell with three point scatterers in the joint (dwell time)-(Doppler 

frequency) plane. The tilted trajectory of the prominent point scatterer 1 implies there 

exist higher-order terms in the phase function. Figure 5(b) shows the basis function h(tD). 

During the search, we change the position (/}), tilting (f2) and curvature (f3, ...) of h until 

the projection of h onto the radar signal is maximized. 

10 



4.2. Measure of Nonlinearity between Two Phase Functions 

We notice that in (8), the two phase functions are formulated with a linear 

relationship plus a nonlinear residual part. After the two phase functions are estimated 

using the AJTF technique, a least-squares fitting can be performed to generate the best-fit 

linear part. The actual phases deviates from this linear relationship. The deviation n is 

integrated over the dwell time to represent the degree of phase nonlinearity over the 

imaging interval as follows: 

Nn = \\nn(tD)\dtD (17) 

The process is illustrated in Figure 6. The solid line is the actual relationship between the 

two phase functions Pi and P2. The dotted line is the linear approximation of the 

relationship. The area of the shadowed region is N]2- 

In a similar fashion, we define the degree of 3D motion as the deviation from a 

linear relationship between #and <p over the dwell interval as follows: 

M = \\m(tD)\dtD (18) 

Based on (13), we see that M and NJ2 are directly related: 

Nn=ßnM (19a) 

where 

AfrAft-Ay.Az,, (19b) 

Ay, + bAz{ 

Thus by finding the observable N!2, we can obtain the degree of 3D motion M to within a 

proportionality constant. 

11 



4.3.3D Motion Comparison among Different Imaging Intervals 

As indicated by (19), the phase nonlinearity of two point scatterers N is 

proportional to the degree of 3D motion M, so we can use the detected phase nonlinearity 

as a measure of 3D motion. However, we notice that the constant of proportionality is 

dependent on the point scatterer positions. A problem arises when we need to compare 

the detection result from one imaging interval to that from another imaging interval. 

Since we cannot guarantee that we track the same set of points from frame to frame, the 

proportionality constant can change from frame to frame, and we cannot reliably observe 

M from N across frames. To overcome this difficulty, we track more than two point 

scatterers within each frame and compute Ny for each pairing of scatterers i and j (i*j). 

Then we generate an average value <Ny> from all the possible phase relationships. 

From (19), we have 

< AT. >=< ßtj>M (20) 

We postulate that, from a statistical point of view, <ßij> approaches a constant that is 

independent of frames if we average over a sufficient number of point scatterers. If this 

is true, <Nip> should become a good indicator of M. 

We test the effectiveness of this approach on the detection result by simulation. 

We input a set of motion parameters and generate the phase functions based on the 3D 

motion model. 20 point scatterers from an airplane model is used. We then randomly 

choose a number of point scatterers and use their phase functions to compute <Afy>. We 

examine how the results vary as different number of point scatterers is used. We find that 

the results begin to converge after about 5 scatterers. Fig. 7 shows a plot of <Nij> versus 

the frame number if we use 5 point scatterers (10 phase pairs). If we increase the number 
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of point scatterers to 10 (45 phase pairs), there is only minor change in the detection 

output. Therefore, <Ntj> can be used to indicate the degree of 3D motion given a 

sufficient number of point scatterers. 

5. Results 

To demonstrate the effectiveness of the 3D motion detection algorithm, we test 

our algorithm on radar data from two targets. The first target is an aircraft, which flew in 

a large clockwise circle during a 9-minute interval. We also have access to the target 

motion data through the GPS (global positioning system) and INS (inertial navigation 

system) sensors carried on-board the aircraft [14-16]. Figure 8 shows our processing flow 

chart. The GPS/INS data is used to establish the truth target motion. The raw radar data is 

used as input to the 3D motion detection algorithm. We can also generate the ISAR 

images using our AJTF motion compensation algorithm [6]. We are therefore able to both 

compare the detection result with the truth motion, and observe the effect of the 3D 

motion on the ISAR image quality. 

We first test the 3D motion detection algorithm on simulated radar data. To 

generate the simulation data, we use the actual motion data from the GPS/INS sensors in 

conjunction with a point scatterer model. From the aircraft model, 60 point scatterers are 

selected to simulate the radar data based on the actual motion data and equation (2). Five 

range cells are then chosen for phase analysis in the detection procedure. Figure 9(a) 

shows the detected degree of 3D motion for 20 image frames from the simulated radar 

data. For comparison, Figure 9(b) shows the degree of 3D motion obtained based on the 

truth motion data. The frames with significant 3D motion are highlighted with circles and 
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the frames with 2D motion are highlighted with diamonds. It is seen that the two results 

agree fairly well. 

Next, we test the detection algorithm using the actual radar measurement data. 

Figure 10(a) shows the detected 3D motion from the radar data over 20 frames. The 

corresponding imaging interval for each frame is 2.3 seconds while the total flight 

duration is 5 minutes. The four frames with the most significant 3D motion based on our 

detection algorithm are labeled as circles. They are frames 6, 14, 17 and 18. Figure 10(b) 

shows the degree of 3D motion obtained based on the truth motion data. We observe that 

the truth motion data indeed contains a high degree of 3D motion at those four frames 

detected by our algorithm. 

To further examine the quality of the ISAR images when 3D motion is present, 

we generate images using our motion compensation algorithm in Figures 11 to 14. Figure 

11(a) shows the plot of 6 vs. 0 derived from the truth motion data for frame 18, which is 

a frame found to contain substantial 3D motion. The actual motion is shown in the solid 

curve and the dashed line is the best-fit 2D motion approximation. It is clear that the solid 

curve deviates significantly from the dashed line and the actual motion cannot be well 

approximated with 2D motion. Figure 11(b) shows the resulting image obtained after the 

motion compensation, and is blurred in the Doppler dimension (vertical axis). As 

expected, the 2D motion compensation algorithm cannot focus all the points due to the 

3D target motion. Figures 12 (a) and 12(b) show the same conclusion for frame 14, which 

is another frame identified as having significant 3D motion. In Figure 13, we show the 

results for frame 2, which has very little 3D motion. As we can see from Figure 13(a), the 

actual motion can be well approximated by a line in the #-0plot. The image shown 

14 
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Figure 13(b) is well focused. In particular, the point scatterers on the target show nearly 

equal range and Doppler extent, contrary to the previous two images. The aircraft 

bodyline is clearly recognizable. 

From Figure 10, we notice that there exists a discrepancy in frame 11, where the 

detection result does not indicate any 3D motion while the truth motion data shows a 

significant amount of 3D motion. The truth motion is shown in Figure 14(a), confirming 

the presence of 3D motion. One explanation is that those prominent points used by the 

detection algorithm lie nearly on a 2D plane so that they still can be focused. As we have 

discussed in Section 3, the 2D model is applicable if either the motion is 2D or the target 

is of 2D in extent. It is likely that the latter condition is met for this frame. This is 

confirmed by the image shown in Figure 14(b). We see that the image quality is actually 

not so bad. Therefore, our detection algorithm objectively reflects the quality of the 

images generated by the 2D motion compensation. 

A second data set is used to test our 3D motion detection algorithm. This data set 

consists of the ISAR data collected from a small ship on the ocean. Because of the 

surface movement of the sea, the target is believed to have considerable 3D motion 

during the imaging intervals. The 3D motion detection result is shown in Figure 15(a) 

with the peaks corresponding to regions with 3D motion. The total data duration is 20 

seconds and the imaging dwell time is 0.64 second per frame. For this data set, reliable 

truth target motion is not available. Instead, we generate the motion compensated images 

shown in Figures 15(b) to 15(d) to demonstrate the effect of 3D motion on ISAR image 

quality. The image frame with the largest detected 3D motion, frames 3, is shown in 

Figure 15(b). It is poorly focused. Figure 15(c) shows the image from frame 14, which 
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is the frame with the second highest detected 3D motion. The frame with the smallest 3D 

motion based on our algorithm, frame 20, is shown in Figure 15(d). It shows a well- 

focused ISAR image. This test confirms the effectiveness of our algorithm in detecting 

good imaging intervals from those imaging intervals containing large 3D motion. 

6. Conclusions 

In this paper, we set out to develop an algorithm to detect the presence of 3D 

target motion from ISAR data. Based on the 3D point scatterer model, we first examined 

the effect of 3D motion on ISAR imaging. It was shown that the existing motion 

compensation algorithms could not properly focus targets exhibiting 3D motion during 

the imaging interval. We then derived an algorithm to blindly detect the degree of 3D 

target motion from raw radar data. It is based on measuring the linearity of phases 

between two or more point scatterers on the target. The phase estimation was 

implemented using the adaptive joint time-frequency technique. Examples were provided 

to demonstrate the effectiveness of the 3D motion detection algorithm with both 

simulation and real ISAR data. The detection results were corroborated with the truth 

motion data from on-board motion sensors and correlated with the resulting ISAR 

images. With the detection algorithm, we have the ability to distinguish the time intervals 

when the target undergoes smooth 2D motion from those containing more chaotic 3D 

motion. As a result, the good imaging intervals where focused images are more easily 

formed can be automatically selected. 
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Fig. 1 Geometry of an IS AR problem. 
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Fig. 2 Illustration of 2D motion vs. 3D motion. 
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Fig. 3 Phase linearization achieved by rotational motion compensation (a) Phases of 
two point scatterer with 2D rotational motion, (b) Both phases are linearized 
with rotational motion compensation, (c) Phases of two point scatterers with 3D 
motion, (d) Only one phase is linearized with rotational motion compensation. 
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Fig. 4 Problem with a typical motion compensation algorithm (a) Target undergoes a 2D 
motion,  (b)  Image after translational  motion compensation,  (c)  Image  after 
rotational motion compensation, (d) Target undergoes a 3D motion, (e) Image after 
translational motion compensation, (f) Image after rotational compensation. 
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Fig.5 (a) (Dwell time)-(Doppler frequency representation of radar signal in a 
range cell with three point scatterers. (b) The basis function that is best matched 
to the dominant point scatterer is found by the AJTF project method. 



Fig. 6 Measure of the nonlinearity of two phase functions. 
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Fig. 9 (a) Detected 3D motion from simulated radar data, 
(b) Degree of 3D motion from truth motion data. 
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Fig. 10 (a) Detected 3D motion from aircraft radar data, 
(b) Degree of 3D motion from truth motion data. 
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Fig. 12 3D motion and resulting ISAR image (frame 14). 
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Fig. 13 2D motion and resulting ISAR image (frame 2). 
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Fig. 14 Frame no.l 1 showing focused ISAR image with 3D motion. 
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Fig. 15 3D motion detection result from radar data of a ship (a) Detected 3D motion, (b) ISAR image 
from frame 3. (c) ISAR image from frame 14. (d) ISAR image from frame 20. 
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Abstract In this paper, genetic algorithms (GA) are proposed for inverse synthetic 

aperture radar (ISAR) imaging of an unknown target. The adaptive joint time-frequency 

(AJTF) analysis is used to achieve translation and rotational motion compensation 

through motion parameterization. GA is used as an alternative to exhaustive search in the 

parameter search process. While maintaining the same accuracy, GA has lower 

computational complexity, especially for targets with highly irregular motions. 

Simulation and measurement data results demonstrate the feasibility of GA in ISAR 

imaging of targets with high-order motions. 
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1. Introduction 

Inverse synthetic aperture radar (ISAR) system usually collects radar data from a 

target moving on the ground, in the air, or over the ocean. In the ISAR problem shown in 

Figure 1, the radar is stationary while the target moves with both translation motion and 

rotational motion. In the microwave frequency range, ISAR has been identified as an 

effective tool for target identification [1]. 



Target motion is an essential part in ISAR imaging. On the one hand, target 

motion is needed to generate Doppler (or cross-range) resolution [2]. On the other hand, 

unwanted motion causes image blurring. When the target has uniform rotational motion 

only and the radar data is collected over a small angular aperture, a simple Fourier 

transform will bring the raw radar data into a two-dimensional ISAR image. However, 

actual targets observed by operational radar rarely have such an ideal motion. Therefore, 

motion compensation is needed to generate focused ISAR imagery. There exist many 

different motion compensation algorithms to deal with target motion [3-5]. Most of the 

algorithms start with coarse range alignment based on the correlation of the range 

profiles. Then the phase information within one range cell is utilized to achieve fine 

motion compensation. 

Phase estimation is critical in fine motion compensation. Compared to the 

amplitude, the phase of the radar signal is much more sensitive to the change in range. 

Based on the concept of signal parameterization reported in [6, 7], an adaptive joint time- 

frequency (AJTF) algorithm was proposed in [8] for phase estimation of a prominent 

point scatterer. In this method, the target motion is modeled as a polynomial function and 

an exhaustive search procedure is used to find the motion parameters that are embedded 

in the phase of the prominent point scatterer. While the performance of this algorithm is 

very good [9], the main bottleneck in this procedure is the computational complexity 

associated with the parameter search. When the target motion is highly irregular, the 

number of parameters needed to model the motion becomes large and the use of the 

exhaustive search becomes prohibitively expensive. 



In this paper, our objective is to reduce the computation time associated with the 

motion parameter search in the AJTF procedure. Our proposed approach is to incorporate 

genetic algorithms (GA) [10] into the AJTF search process. (Some preliminary work on 

this topic was reported in [11].) In contrast with conventional optimization methods, GA 

is a population-based, statistical search technique. It borrows such concepts as inheritance 

and mutation from the biological evolution process [12]. As a global optimization 

technique, GA is known to be very easy to implement and applicable to many design and 

inverse problems [13]. 

This paper is organized as follows. In Sections 2 and 3, we outline the 

methodology. The AJTF analysis for ISAR motion compensation is described in Section 

2. Genetic algorithms are introduced in Section 3. The next two sections include results 

and analysis. In Section 4, simulations with point scatterers are provided to validate the 

use of GA for phase estimation. Measurement data processing results are shown in 

Section 5. Finally, conclusions are given in Section 6. 

2. ISAR Motion Compensation Using the Joint Time-Frequency Projection 

A two-dimensional point scatterer model relates the radar data to a moving target 

through the following equation 

£(/,rD) = ^(T,.expH^-[/"(fD) + x,. + ^(fD)]} (1) 
i c 

where / is the frequency and tD is the dwell time. In this model, the radar data is 

comprised of the sum of responses from a collection of point scatterers. fey,) denotes the 

point scatterer position while Oi denotes the scatterer strength. The target motion includes 

both translation motion r(tD) and rotational motion (p(tD). 



After range compression is done by Fourier transforming the data with respect to 

frequency, the original radar data is converted into a set of range profiles. Range 

alignment is then carried out via amplitude correlation of the range profiles to place all 

the point scatterers in their correct range bins. The radar signal through one range cell r 

can thus be expressed in the form of 

Er(tD) = 5>,- cxp{-j^-[Ar(tD) + xt + yi(p{tD)]) (2) 
i c 

where f0 is the center frequency of the radar and the index includes only those point 

scatterers in the particular range cell. The residual translation motion is depicted as 

Ar(tD). After such coarse alignment procedure, the residual translation motion is smaller 

than the range resolution. However, it can still be larger than the radar wavelength. 

Therefore, it is important to include this term in (2). 

Both of the residual translation motion Ar(tD) and the rotational motion cp(tD) can 

be expanded into polynomial functions of the dwell time as 

Ar(tD) = axtD+a2tD
2+a/D... ^ 

<p(tD) = b1tD+b2tD
2+b/D... 

where any coefficients beyond the first order are detrimental to ISAR image formation. 

To solve the ISAR motion compensation problem, we need to determine these motion 

parameters and to remove the unwanted nonlinear phase terms from the radar data. 

This task can be accomplished using the AJTF procedure [8]. The essential idea 

of this procedure is to find the basis function that most resemble the strongest signal 

component in equation (2). For our problem, a basis function in the form of 

h(tD) = exp[-7^.(/,rD + f2t
2

D + f/D..)] (4) 



is used. The best basis is found by searching for parameters/7,/2,/j, ••■ that maximize the 

projection from the radar signal onto the basis, i.e., 

< /„ /2, /3.- >= arg max k Er(tD), h(tD) >l (5) 

where the projection is formulated as the inner product of the two functions as 

< Er(tD),h(tD) >= \Er{tD)h\tD)dtD (6) 

In (5), the linear coefficient fi can be found efficiently with the fast Fourier transform 

(FFT). Coefficients for the nonlinear phase terms, f2,f3, ..., must be determined through a 

more time-consuming search. 

Figure 2 depicts the concept of AJTF processing for ISAR translation motion 

compensation. After range alignment, the range profiles are shown in Figure 2a. Range 

cell i contains a prominent point scatterer and Figure 2b shows the joint (dwell time)- 

(Doppler frequency) representation of the radar signal through this range cell. A signal 

with linear phase behavior shows up as a straight horizontal line in the joint time- 

frequency plane. Both scatterers shown in Figure 2b are tilted and curved due to the 

higher-order residual motion. Also shown in the figure is the basis function h. To get the 

maximum projection, different values of/;, f2, /i, ... are tried until the basis function 

approaches the strongest scatterer. After the motion parameters of the prominent point 

scatterer are found in this manner, we can carry out the translation motion compensation 

by multiplying the radar data with the conjugate of this basis. Since all the point 

scatterers share the same translation motion in equation (2), this operation will remove 

the translation motion of the whole target. 

After the translation motion compensation, we can rewrite equation (2) as 



£r(fD) = 2>.-exPW— [Axi+Ayi(b,tD+b2tD
2+b/D...)]} (7) 

where (Axi,Ayi) is the differential position of the ith scatterer relative to the prominent 

point scatterer chosen for translation motion compensation in the previous step. To 

accomplish the rotational motion compensation, a second prominent point scatterer, 

usually in a range cell different from the first one, is chosen for phase analysis. The same 

search procedure as described before is used to find the rotational motion parameters in 

(7). Then to achieve rotational motion compensation, we can simply define a new dwell 

time variable t'o '■ 

tD=tD+ — (b2tD
2+b3tD

3+...) (8) 
bi 

and resample the radar data uniformly in terms of this new time variable: 

Er(tD) = 2>, expt-y^Ax, + AyA'o)] (9) 
/ c 

This resampling procedure is applied to the entire data set to linearize the phase of the all 

the point scatterers on the target. From equation (9), it is clear that Fourier transforming 

the data with respect to t'D will resolve the point scatterers in the cross range dimension. 

3. Use of Genetic Algorithms for Phase Parameter Search 

As we have discussed in the last section, ISAR motion compensation can be 

formulated as a parameterization process for both translation motion and rotational 

motion. In [8], a brute-force search procedure is employed to carry out the 

parameterization. This means that we exhaustively search the solution space for the 

maximum projection. Genetic algorithms (GA) are investigated here to search for the 



motion parameters to reduce the computation time. We should point out that although a 

structured tree-search is an easy and straightforward way to decrease the computational 

complexity, it does not always lead to a global optimum. 

GA is a global optimization method based on concepts from ecological systems 

[10, 12, 14]. The flowchart of a typical GA process is illustrated in Figure 3. It starts by 

setting up the parameters for both the physical problem and the GA implementation. GA 

operates on a population of many individuals. The initial population is randomly 

generated within the searching space. The goodness of the solution is then evaluated 

based on an objective function. For our problem, the objective function is defined as the 

projection magnitude from the radar signal onto the basis function (see equation (5)). If 

we are satisfied with the solution, the process is done. Otherwise, a new generation is 

produced for the next evaluation-reproduction iteration. To make up individuals in the 

new generation, some good parents are selected from the previous generation and two 

operations called crossover and mutation are applied to produce children in the next 

generation. Whether or not crossover and mutation occur is determined randomly. The 

crossover and mutation probabilities are chosen based on the tradeoff between two 

conflicting requirements. Increasing the variation in the new generation brings a chance 

for better solutions, but it tends to lose the features of the good solutions from the 

previous generation. 

Roughly speaking, there are two kinds of GA. One is binary-coded GA [10]. The 

other is real-coded GA [15]. In the former, the physical parameters to be searched are 

first discretized into binary bits. There is a one-to-one mapping between a physical 

parameter C and its JV-bit binary representation clt C2,..., CJV as follows: 



C = %-^i>,2<-'+Cmin (10) 

where the [Cmin, Cmax] is the valid search space for C. A candidate solution of the problem 

is expressed in the form of a chromosome, which is the collection of bits representing all 

the parameters. For crossover, a random break point in the chromosome is picked. The 

bits before the point from one parent are combined with the bits after the point from 

another parent to form one child. Another child is generated in the reverse fashion. For 

mutation, a single bit is randomly picked and its valued is inverted. The crossover and 

mutation operations for binary-coded GA are depicted in Figure 4a. 

In real-coded GA, there is no coding-decoding process and the algorithm directly 

operates on the physical parameters. For crossover, a linear combination is usually used 

as follows 

fC.^+d-tf)^ (n) 

\C2=(l-a)Pl+aP2 

where two children (Ci, C2) are reproduced from two parents (Pi,P2)- or is a random 

number between 0 and 1 to ensure that the new parameters will not fall out of range. For 

mutation, a child C that is different from the parent P is needed. For this purpose, a 

solution Pe is picked up randomly from the searching space and linearly combined with P 

to generate C as in equation (11). The crossover and mutation operations for real-coded 

GA are depicted in Figure 4b. 

The basic theory in GA, the schemata theory, seems to favor the use of binary- 

coded GA [14]. Most work on GA has followed this path. Recently, researchers have also 

experimented with real-coded GA and have observed some advantages in convenience 



and accuracy [16]. In the next section, we will test both binary-coded and real-coded GA 

in our phase estimation problem. 

The GA process is usually stopped using criteria based on the performance of the 

available solutions in the present generation. In our case, we do not know the true 

maximum projection value. Therefore, we choose to stop the GA process when the 

projection value does not increase after a certain number of generations. 

4. Point Scatterer Simulation 

Point scatterer simulations are first used to test the use of GA for ISAR motion 

compensation. In the first example, we assume two point scatterers with amplitudes 1 and 

0.2. They are located within one range cell and contain third-order translation motion 

(i.e., the coefficients a/, 02 and as in equation (3) are significant while all higher-order 

coefficients are zero). We run both binary-coded GA and real-coded GA to search for ci2 

and a3 for this simple phase estimation problem. The population size is 50. In both cases, 

the crossover probability is 0.8 and the mutation probability is 0.3. For exhaustive search, 

the search for «2 and a? is carried out on a 128 by 128 grid. We choose a 7-bit 

representation in binary-coded GA and search in the same discrete space as in the 

exhaustive search. The actual objective function surface is plotted in Figure 5a. We 

observe many local maxima, indicating this would be a challenging problem for a local 

optimization method. Figure 5b shows the GA convergence curve, with the real-coded 

GA result in solid line and the binary-coded GA result in dashed line. Since GA is a 

statistical approach, we do not get exactly the same result from each GA run. To decrease 

the statistical variation, the results in Figure 5b are obtained by averaging over 20 GA 



runs. We can see that after about 150 generations the two projection curves nearly 

converge to the truth value of 1. We also observe that real-coded GA produces a slightly 

higher projection value. Figure 5c shows the resulting phase from a single GA run after 

200 generations. The estimated phase from binary-coded GA is plotted in circles, the 

phase from real-coded GA in crosses, and the original phase function in solid line. We 

see very good agreement among the three results, meaning good accuracy from the two 

GA results. 

In the second example we compare the computational complexity of GA to 

exhaustive search for different orders of motion. As we have pointed out earlier, the main 

problem with exhaustive search for motion parameter extraction is the computational 

load. This problem becomes more acute when the order of the motion is high. Again, we 

use two point scatterers with amplitudes 1 and 0.2. We generate the radar data from these 

two point scatterers with some preset motion. We then apply exhaustive search, binary- 

coded GA, and real-coded GA for the phase estimation problem with different orders of 

motion. The same GA parameters as in the previous example are used and the results are 

averaged over 20 runs. The exhaustive search is known to have an exponential 

complexity of 0(exp(n)). As expected, the resulting computation time in logarithm scale 

shows up as a straight line in Figure 6a. For GA, no theoretical complexity formulation is 

available in general. (The complexity of 0(n log n) is claimed for selected test functions 

in [17].) We run both binary-coded GA and real-coded GA up to sixth-order motion (i.e., 

search for 5 parameters) and plot the results in Figure 6a. It is observed that both binary- 

coded GA and real-coded GA have much lower complexity than exhaustive search. The 

difference in complexity between the two GA is only minor. The projection values from 
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binary-coded GA and real-coded GA are next plotted in Figure 6b as circles and crosses, 

respectively. We see that the real-coded GA results are closer to the truth value of 1.0 

than the binary-coded GA results, especially for higher-order motions. Since binary- 

coded GA searches on a finite grid as in exhaustive search, it can never get solutions that 

surpass the exhaustive search result. On the other hand, real-coded GA has the ability to 

search for any real values within the search range. Consequently, real-coded GA has 

more chance of finding a better solution. The same trend is also observed with 

measurement data and will be discussed further in the next section. 

In the last simulation example, we show that the correct phase estimation from 

GA can be utilized to achieve ISAR motion compensation. For this purpose, four point 

scatterers, with two in one range cell and two in another range cell, are assumed to carry 

both translation and rotational motion up to third order. The aligned range profiles are 

shown in Figure 7a. The dwell time vs. Doppler frequency spectrograms of the original 

radar signal in range cells 1 and 2 are shown in Figures 7b and 7c respectively. Figure 7d 

shows the resulting cross range image using the Fourier transform directly. Without 

motion compensation, the four point scatterers are not well resolved. After we apply real- 

coded GA to the data in range cell 1, the estimated phase function is shown in Figure 8a. 

This corresponds to the translation motion of the target. After removing this motion, the 

resulting signal has spectrograms for range cells 1 and 2 shown in Figures 8b and 8c 

respectively. As expected, only one point is focused in Figure 8d. We next estimate the 

phase of a second strong point scatterer by running GA for range cell 2. The resulting 

phase function is shown in Figure 9a. Time resampling is done to linearize this curve. 
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Now all the point scatterers appear as horizontal lines in Figures 9b and 9c. Figure 9d 

shows the resulting image. The four point scatterers are all well resolved in this figure. 

5. Measurement Data Processing 

We next apply GA on some measurement data. The data were collected from an 

in-flight aircraft using a ground radar. 128 pulses are processed to form an IS AR image. 

This corresponds to an imaging interval of about 2.5 seconds. GA is evaluated for fine 

motion compensation. For the first data set, the image without any fine motion 

compensation is shown in Figure 10a. This image is unfocused due to the residual 

motion. We select a range cell with a dominant scatterer (range cell 79) and apply GA to 

estimate the phase based on a third-order translation motion model. The resulting images 

from binary-coded and real-coded GA are shown in Figures 10b and 10c, respectively. 

We observe that the two GA images are as focused as the reference image in Figure lOd 

obtained using exhaustive search. The corresponding projection values are 2401 and 

2595, as compared to the exhaustive search result of 2401. We continue this comparison 

using 19 other imaging intervals. Figure 11a shows the projection values (normalized 

with respect to the exhaustive search result) for the 20 frames. For 19 out 20 frames, real- 

coded GA gives larger projection values than exhaustive search. The resulting images are 

either on par or slightly better focused than those obtained from exhaustive search. For 

binary-coded GA, 7 frames have lower projection values and are of inferior image quality 

to those from exhaustive search. The other 13 frames have exactly the same projection 

values as the exhaustive search result. Similar to our conclusion earlier based on the 

simulation data, our experience with the measurement data indicates that real-coded GA 
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consistently outperforms binary-coded GA in terms of accuracy. The computation time 

using Matlab codes on a Pentium III 750MHz PC is summarized in Figure 1 lb. While 

there is little change in the computational time for exhaustive search from one frame to 

another, the times for binary-coded and real-coded GA exhibit large variations in these 

single run results due to the statistical nature of GA. The average times for the binary- 

coded and real-coded GA are 19.5 seconds and 11.5 seconds, respectively. This is 

compared to the 45.5 seconds from exhaustive search. Finally, we note that for these 20 

frames the third-order model is adequate to model the translation motion. Inclusion of 

higher-order translation motion or rotational motion does not improve the image quality 

for this data set. 

For a second data set, we first apply third-order translation motion compensation 

using real-coded GA. The resulting image is shown in Figure 12a. It is seen that the 

selected dominant point scatterer at range cell 64 is not well focused. This means that the 

target contains higher motion that cannot be fully compensated by the third order motion 

model. This fact is also revealed by the spectrogram of the compensated signal in Figure 

12b, as we observe a curved JTF trajectory for the scatterer. Next, a fourth-order motion 

model is tried and the real-coded GA result is shown in Figure 13a. From this figure, the 

reference point scatterer is better focused and the spectrogram of the signal is 

straightened in Figure 13b. Fifth-order translation motion is also attempted, and the result 

does not show much improvement. However, we observe that other point scatterers in 

Figure 13a are still smeared. This is confirmed by the spectrogram of the signal at a 

different range cell (number 71) shown in Figure 13c, which shows that the signal 

trajectory is curved in the spectrogram. Thus rotational motion must exist in this data. We 
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next apply fourth-order rotational motion compensation using real-coded GA. As shown 

in Figure 14a, the whole target is much better focused after the compensation. The 

spectrograms of the signal at both range cells become straightened in Figures 14b and 

14c. While real-coded GA takes 45 seconds for the phase estimation problem, the 

computation time for fourth-order exhaustive search is estimated to be over 50 minutes 

based on the complexity curve in Figure 6a. Therefore, the time savings of GA over 

exhaustive search is quite significant in this real-world example. 

6. Conclusions 

In this paper, genetic algorithms have been applied to ISAR motion 

compensation. Based on the adaptive joint time-frequency analysis, GA is used in the 

phase estimation of prominent point scatterers on the target. The resulting parameterized 

phases are then used for translation and rotational motion compensation. Both binary- 

coded GA and real-coded GA have been implemented and tested using simulation and 

measurement data. It is found that real-coded GA outperforms binary-coded GA in terms 

of accuracy in the phase estimation problem. It is also shown that the computational 

complexity of the GA search is much less than that of exhaustive search. The time 

savings can become especially significant when the target exhibits highly irregular 

motion. 
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Fig. 1. Geometry of the IS AR imaging problem. 
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Fig. 2. The concept of AJTF analysis for ISAR motion compensation, (a) Correlator- 
aligned range profiles with a strong point scatterer in range cell i. (b) Joint 
(dwell time)-(Doppler frequency) representation of the signal in range cell i. 
The basis function h that is best matched to the strongest scatterer is 
determined via parameter search. 
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Fig. 3. Flowchart of GA. 



(a) 

Crossover  10111101 ->    101170/0 

01101010]    07/01101 

(b) 

Crossover Cj   ~|    a P{ + (1 -a) P2 

C2   i   (l-a)P, + aP2 

Mutation    10111101 -» 10011101 Mutation C   -»   aP + (\-a)Pe 

Fig. 4. Examples of crossover and mutation operations in binary and real-coded 
GA. (a) Binary-coded GA. (b) Real-coded GA. 
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Fig. 7. Point scatterer testing using four scatterers in two range cells, (a) Range 
profiles prior to the fine motion compensation, (b) Spectrogram of the signal 
in range cell 1. (c) Spectrogram of the signal in range cell 2. (d) Resulting 
image via FFT processing. 
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Fig. 8. Translation motion compensation using real-coded GA. (a) GA-estimated phase 
due to the translation motion, (b) Spectrogram of the signal in range cell 1. (c) 
Spectrogram of the signal in range cell 2. (d) Resulting image. 
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Fig. 9. Rotational motion compensation using real-coded GA. (a) GA-estimated phase 
due to the rotational motion, (b) Spectrogram of the signal in range cell 1. (c) 
Spectrogram of the signal in range cell 2. (d) Resulting image. 



(a) (b) 

(c) (d) 

20 40 

Fig. 10 Translation motion compensation applied to measurement data using a 
third-order motion model, (a) Image before fine motion compensation, 
(b) Binary-coded GA result, (c) Real-coded GA result, (d) Exhaustive 
search result. 
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Fig. 12. Motion compensation example for another measurement data set. (a) 
Image after third-order translation motion compensation using real- 
coded GA. (b) Spectrogram of the signal in range cell 64. 
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Fig. 13. Higher-order translation motion compensation, (a) Image after fourth- 
order translation motion compensation using real-coded GA. (b) 
Spectrogram of the signal in range cell 64. (c) Spectrogram of the 
signal in range cell 71. 
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Fig. 14. Higher-order rotational motion compensation, (a) Image after fourth-order 
rotational motion compensation using real-coded GA. (b) Spectrogram of 
the signal in range cell 64. (c) Spectrogram of the signal in range cell 71. 
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Electromagnetic Inversion of Ipswich Objects 

Using the Genetic Algorithm 
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Abstract: The genetic algorithm is combined with a moment method 

solver to carry out the shape inversion of two-dimensional metallic 

objects. The binary bitmap discretization is used in conjunction with 

geometrical median filtering to describe the shape of the object. 

Results of the shape inversion using this algorithm are presented for 

several Ipswich objects based on measurement data. 

Introduction: Inverse synthetic aperture radar (ISAR) imaging [1] is a 

linearized form of electromagnetic inverse scattering. While the algorithm is 

fast and robust in obtaining the approximate shape of an object, it suffers from 

resolution limitation and image artifacts due to multiple scattering phenomena. 

Rigorously solving the electromagnetic inverse scattering problem, on the other 

hand, is much more challenging. Recently, some researchers have explored the 

use of genetic algorithms (GA) together with computational electromagnetic 

solvers to attack the inverse scattering problem [2-6]. In this letter, we present 

results of using GA in conjunction with a method of moment (MoM) solver to 

invert metallic objects from the Ipswich measurement data set [7]. In particular, 



we focus our attention on concave metallic objects with strong multiple 

scattering effects. 

In the inversion of two-dimensional (2D) objects, two types of the 

geometrical descriptions have been used: the Fourier series scheme [2,4] and 

the binary bitmap discretization [3,5]. The Fourier series scheme is very 

efficient in representing smooth convex shapes. However, it does not work well 

for objects with highly concave shapes or disconnect parts. The binary bitmap 

discretization is a more general way to represent arbitrary 2D shapes. Its main 

drawback is the larger degrees of freedom required to accurately model simple 

shapes. More recently, cubic B-splines were also investigated as a way to 

accurately represent complex shapes [6]. In this work, we use the binary 

bitmap approach to discretize the search space. To constrain the problem, a 

geometrical median filter is applied to create more realizable shapes. A cost 

function is defined as the difference between the measured and the computed 

scattered fields from each assumed shape. The inverse problem is then cast into 

a minimization problem and genetic algorithm is applied to minimize this cost 

function. Three Ipswich objects, the triangular cylinder, the dihedral and the 

circular cavity are inverted by using this scheme. Results based on both the 

MoM-simulated field and the measured data are presented. 

GA Scheme:   In an inverse problem involving metallic objects, the measured 

mea 
scattering field E from the object is known while the shape and size of the 

object are unknown. We apply a method of moment solution based on the 

electric field integral equation to obtain the rigorously computed scattered field 



CG I 
E    from each assumed shape. To evaluate the performance of each shape, we 

mea 
define the cost function as the root-mean-square (RMS) error between E     and 

cat 
E   . 

The genetic algorithm is applied as the searching tool to minimize the 

cost function. In our GA implementation, the initial generation is produced 

randomly and each object shape is encoded into an NxN binary array with ones 

representing metal and zeros representing free space. A 2D median filter is used 

as a low-pass filter to eliminate unrealistic shapes consisting of isolated cells. 

With a fixed window size of MxM, the median filter slides through every cell 

of the binary array and sets the cell to one if the sum of the cell values within 

the window is greater than or equal to M2/2 and zero otherwise. The median 

filter is applied once every several generations so that the isolated cells are 

cleared from time to time, while the new features created by the mutation and 

crossover operations have a chance to survive in the population. 

The cost function for each member is then calculated and the shapes 

with low cost values are selected as parents to produce the next generation. A 2- 

point crossover scheme involving three selected parents is used. The process 

selects three parents and divides each parent into three parts. The three parent 

shapes are then intermingled to produce three children shapes. This crossover 

scheme exhibits a more disruptive characteristic for regeneration than the 

conventional one-point or two-point crossover. It serves to counteract against 

the median filtering effect. The mutation operation, which is applied to the 

individual array cells, inverts the cell according to a preset mutation rate. The 



selection, crossover and mutation process is iterated until the lowest cost 

function in the population reaches a sufficiently small threshold or when the 

cost function does not decrease any more. 

Results: The Ipswich measurement data was taken at a single frequency of 

10GHz in the bistatic configuration. There were a total of 36 transmitter 

positions around the object and 18 receiver locations for each transmitter 

position (Fig. 1). Fig. 2a shows the shape and size of three metallic Ipswich 

objects selected for inversion, namely, the triangular cylinder, the dihedral and 

the circular cavity. They are labeled as Ips009, Ips004 and IpsOl 1, respectively. 

For Ips009 and IpsOl 1, the electric field is parallel to the axis of the target. For 

Ips004, the electric field is perpendicular to the axis of the target. 

We first tested the inversion algorithm using MoM-simulated field data 

as the input. In all of the reconstructions, the number of the population was set 

to 100 and the crossover and mutation rates were set to 0.8 and 0.2, 

respectively. The search area was chosen to be 15cmxl5cm for Ips004 and 

12cmxl2cm for Ips009 and IpsOl 1. The number of cells within this area was 

set to 20x20. The reconstructed results in Fig. 2b show the final inverted 

shapes of the three objects. We observe that the final shapes are in fairly good 

agreement with the real shapes. The final RMS costs for the three objects were 

found to be 0.03, 0.38 and 0.18, respectively. The dihedral and the circular 

cavity contain strong multiple scattering and yet their inverted shapes closely 

resemble the correct objects. Results for these targets were also generated using 



the traditional imaging method and they showed strong image artifacts due to 

multiple scattering. 

Next, we applied the inversion algorithm to the actual measured data. 

Fig. 2c shows the final reconstruction shapes. As we can see, the inverted shape 

is good for the triangular cylinder, which has no multiple scattering effects. For 

the dihedral, the reconstructed shape is not continuous, but is quite similar to 

the real object. The circular cavity shows the most discrepancy with the real 

shape. The exterior and the opening of the cavity are correctly inverted, while 

the interior part of the cavity shape is not as satisfactory. 

Interestingly, in all three inversions, we found that the final shape 

obtained by GA has a lower cost value than that of the exact shape (0.40 vs. 

0.58 RMS error for the triangular cylinder; 0.82 vs. 0.92 for the dihedral and 

0.55 vs. 0.73 for the circular cavity). This is caused by the mismatch between 

the measured field and the MoM-simulated field. We believe it is this 

difference that drove the GA to zoom onto a shape that is similar to the exact 

shape but has a lower cost value. 

Note that the RMS error listed above is particularly high for the 

dihedral. We found that the agreement between the measured data and the 

MoM-computed data for this shape was good in the field amplitude. However, 

relatively large phase difference exists (even after adjusting for the rotation 

center) between the two results. The MoM results were also checked against 

other targets in the Ipswich data set and the phase agreement was found to be 

good. We therefore conclude that the phase data for Ips004 is suspect.  As an 



alternative, we also performed the inversion based on only the amplitude of the 

fields. The reconstructed shape is shown in Fig. 3. The quality of the 

reconstruction is close to that of the MoM-simulated data shown in Fig. 2(b). 

Conclusion: A genetic algorithm was combined with a moment method solver 

to carry out shape inversion of the Ipswich measurement data. We used a 

binary bitmap discretization in conjunction with a geometrical median filter to 

describe the shape of the object. It was found that the algorithm could deal with 

objects containing strong multiple scattering effects. 

Acknowledgment: This work is supported by the Office of Naval Research 

under contract No. N00014-98-1-0615. 
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ABSTRACT 

Two applications of the adaptive joint time-frequency 
(AJTF) algorithm for ISAR image formation are 
presented. First, AJTF is utilized for ISAR motion 
estimation and compensation. Focused images from 
measured radar data are presented to illustrate the 
effectiveness of the algorithm when applied to in-flight 
aircraft data. Second, the AJTF algorithm is extended to 
detect the presence of chaotic, three-dimensional motions 
in an articulating target. Preliminary test results on 
measured data show that the algorithm can correctly detect 
those imaging intervals where significant three- 
dimensional motions exist. 

1. INTRODUCTION 

High-resolution inverse synthetic aperture radar (ISAR) 
imaging is a promising tool for non-cooperative target 
identification (NCTI). The main challenge in ISAR-based 
NCTI is to form a well-focused image of an articulating 
target with unknown motion. In this paper, we first review 
the application of joint time-frequency methods for ISAR 
image formation. By using an adaptive joint time- 
frequency (AJTF) algorithm to estimate the phase of the 
prominent scatterers, we show that the target motion can be 
estimated and a focused image of the target can be 
constructed. Results of applying the algorithm to 
measured ISAR data are presented and discussed. 
Secondly, we report on our recent work to extend the 
AJTF algorithm to address the more challenging situation 
when the motion of the target is not limited to a two- 
dimensional plane. In particular, we discuss our research 
to detect the presence of three-dimensional motion using 
the AJTF algorithm. 

2. ISAR MOTION COMPENSATION 
USING JOINT TIME-FREQUENCY 

ALGORITHM 

We first review the application of joint time-frequency 
methods for ISAR image formation. To form a focused 
image from raw radar data, it is customary to first carry out 
a coarse alignment of the data in the range dimension, 

followed by fine motion compensation in the cross range 
dimension. Joint time-frequency techniques have been 
shown to be a useful tool to carry out the fine motion 
compensation [1,2]. We assume that after the coarse range 
alignment, all the scatterers are located in their respective 
range cells. The radar backscattered signal as a function of 
dwell time t in a particular range cell can be written as 

E{t) = Y,\ exph/—(A(0 + xk cos0(t) 
k=\ (1) 

+ yksin0(t))] 

where N is the number of point scatterers in that range cell, 
and Ak, xk, yk are respectively the scattering amplitude, 
down range position and cross range position of the k"1 

point scatterer. R(t) is the residual uncompensated 
translation displacement and 0(t) is the rotational 
displacement. Due to translation and rotational motion, the 
Doppler frequency versus dwell time behavior of the point 
scatterers within this range cell is not constant in the joint 
time-frequency plane (see Fig. 1). An effective JTF 
technique to extract the motion parameters is based on a 
search and projection procedure to represent the phase 
behavior of the signal E(t). This procedure is based on the 
adaptive spectrogram proposed in [3], and is similar in 
concept to a one-term matching pursuit algorithm [4]. We 
shall term it the adaptive JTF (AJTF) algorithm. To find 
the motion parameters, basis functions in the form of 

h(t) = exp[-j(ajt + a2t
2 +a3t

3 )] (2) 

are chosen. We search for the basis function over the 
parameter space (a;, a2, a3) that best represents the time- 
frequency behavior of the signal by maximizing the 
projection of the signal onto the basis: 

max 
a,,a2,a3 

\E(t)h*(t)dt (3) 

After the time-varying phase for the strongest point 
scatterer is found, we multiply the original signal by the 
conjugate of this phase factor to compensate for the 
translation motion. This algorithm can also be extended to 
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Fig. 1. Fine motion compensation is carried out by 
the Doppler frequency versus dwell time behavior of 
the strong point scatterer in the signal. 

multiple range cells to correct for higher-order rotation 
motion. After applying the JTF motion compensation, the 
standard FFT processing in the dwell time domain brings 
the signal into the cross range image domain. Fig. 2 shows 
an exmaple of applying the AJTF algorithm to measured 
ISAR data of an in-flight aircraft. The shape of the aircraft 
is clearly visible in the resulting image after the AJTF 
motion compensation. 

3. THREE-DIMENSIONAL MOTION 
DETECTION USING JOINT TIME- 

FREQUENCY ALGORITHM 
One basic assumption of standard motion compensation 
algorithms is that the target only undergoes motion in a 
two-dimensional plane during the dwell duration needed to 
form an image. From several independent examinations of 
measured ISAR data sets recently, it was reported that the 
presence of three-dimensional motion is quite detrimental 
to focusing the image [5-7]. We shall report on our recent 
work to extend the AJTF algorithm to address the more 
challenging situation when the motion of the target is not 
limited to a two-dimensional plane. In particular, we 
discuss our research to detect the presence of three- 
dimensional motion using the AJTF algorithm. 

Allowing for arbitrary three-dimensional motion in space, 
we consider the following model as a generalization of the 
model for two-dimensional motion in (1): 

N 
E(t)= Y<AkexPl-i 

k=l 

-^xk+ykd + Zk0)]    (4) 

Fig. 2.   ISAR image of an in-flight aircraft 
obtained after AJTF motion compensation. 

where 0 is the azimuth angle of the target with respect to 
the radar, and (f> is the elevation angle. In (4), it is assumed 
that the translation motion has been removed and that the 
standard small-angle, small bandwidth approximations 
apply. This model reduces to the standard two-dimensional 
motion model when öand 0are linearly related. 

In general, a focused image cannot be obtained from the 
standard two-dimensional motion compensation algorithm 
when three-dimensional target motion is present due to 
model mismatch. Therefore, it would be useful to detect 
the presence of three-dimensional motion directly from the 
radar data. Our approach is to utilize the AJTF algorithm 
to extract the phase behavior of the radar data at multiple 
range cells. We first parameterize the phase of the 
prominent point scatter in one range cell using AJTF. 
Next we repeat the same procedure at another range cell. 
It can be shown that when the target undergoes only two- 
dimensional motion during the dwell duration, the ratio 
between the parameters (a/, a2, ai) extracted from one 
range cell and those corresponding parameters in another 
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Fig. 3. (a) Simulated 2D target motion, (b) Phase 
behavior of the prominent point scatterer in range cell 1 
extracted using AJTF. (c) Phase behavior of the prominent 
point scatterer in range cell 2 extracted using AJTF. (d) 
Ratios of the extracted phase parameters from the two 
range cells. Note that they are nearly constant, (e)-(h) 
Similar to (a)-(d), except that 3D motion is assumed. The 
resulting ratios in (h) are no longer constant. 

range cell should be constant. Therefore, by examining the 
ratio of the parameters, we can distinguish two- 
dimensional motion from three-dimensional motion. Fig. 3 
illustrates the idea using simulated point scatterer data. 
Figs. 3(a)-(d) show the two-dimensional motion scenario 
and Figs. 3(e)-(h) show the three-dimensional scenario. It 
can be seen from the results in Fig. 3(d) that the 
determined ratios: 

c,=7.20 
c2=1.60 
c3=-1.41 

Cj =ai(range cell I)/arrange cell 2) (5) 

are nearly constant for all the terms in case of two 
dimensional motion, as expected. For three-dimensional 
motion, the ratios are not the same, as seen in Fig. 3(h). 

Fig. 4 shows our preliminary results of applying the 3D 
motion detection algorithm to real radar data. Fig. 4(a) 
shows the degree of three-dimensional motion in the data 
for 20 different image frames, detected by applying our 
algorithm to the raw radar data. As a reference for 
comparison, Fig. 4(b) shows the degree of three- 
dimensional motion for the same 20 frames measured 
using the motion data derived from inertial navigation 
instruments carried onboard the aircraft during data 
collection. It can be seen that our algorithm correctly 
detects where significant three-dimensional motions exist. 
We are currently fine tuning the algorithm to achieve faster 
and more robust detection. We believe this detection 
algorithm could be quite useful for determining the "good" 



25 

20 

15 

10 

(a) Blind detection from radar data 

Degree 
of 3D 
motion 

\ ./"\.. A- 
V 

£ 
 J   \ 

J L/ 
J 

5 10 15 
Image frame No. 

20 

(b) Truth motion from instrument 

0.4 
Degree 

O.i of 3D 9 
A A 0.2 

\ / V \ 0.1 / V'\ /   \ 
5 10 15 

Image frame No. 
20 

Fig. 4. Blind detection of three-dimensional motion 
from real radar data, (a) Degree of three-dimensional 
motion over 20 image frames detected using the 
proposed algorithm, (b) Degree of three-dimensional 
motion measured from on-board instrument data. 

imaging intervals from which focused images can be more 
readily generated. For targets that exhibit very chaotic 
motions, such as ships on the ocean, finding such intervals 
of opportunity may be very critical for target recognition. 

4. SUMMARY 

In this paper, we presented two applications of the 
adaptive joint time-frequency algorithm for ISAR image 
formation. In the first application, we carry out fine 
motion compensation to form focused ISAR images of 
articulating targets. The AJTF algorithm is used to 
estimate the phase of the prominent point scatterer within a 
range cell. The higher-order phase error due to 
uncompensated translation and rotational errors are then 
removed prior to the image formation. Results show that 
well-focused images can be obtained from measured data 
of an in-flight aircraft. In the second application, we try to 
detect the presence of three-dimensional target motion, for 
which a well-defined imaging plane does not exist. A 
three-dimensional motion model is utilized and the 
linearity of the phase functions of the prominent point 
scatterers between different range cells is used to 
distinguish two-dimensional from three-dimensional 
motion. The AJTF engine is again used to extract the 
phase function of the prominent scatterer within each range 
cell. Preliminary test results using real radar data indicate 

that the algorithm can be used to detect those imaging 
intervals where conventional two-dimensional motion 
assumption would fail. We are working to devise 
algorithms for forming focused images even in the 
presence of these three-dimensional motions. 
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ABSTRACT 

Based on the point scatterer model, a radar signal can be effectively analyzed using the joint time-frequency (JTF) method. 
The basis functions of a few prominent point scatterers are believed to carry target motion information essential to the ISAR 
imaging process. One major problem with the JTF method is the computation load associated with the exhaustive search 
process for motion parameters. In this paper, genetic algorithms (GA) are used to for the parameterization process in the JTF 
method. Real and binary coded GA are investigated and their performance compared with the exhaustive search. It is shown 
that a significant amount of time can be saved while achieving almost the same image quality by using real-coded GA. 

Keywords:   inverse synthetic aperture radar (ISAR) imaging, motion compensation, joint time-frequency technique, genetic 
algorithm 

1.   INTRODUCTION 

High-resolution inverse synthetic aperture radar (ISAR) imaging is a promising tool for non-cooperative target recognition. • 
It utilizes the motion of a moving target to generate the necessary cross-range resolution in forming an image. Ideally, the 
desired target motion is uniform rotation without translational motion, under which a two-dimensional Fourier transform 
converts the radar data in the (frequency)-(dwell time) domain into the (range)-(Doppler frequency) domain. Otherwise, 
motion compensation is needed as an intermediate step to form a focused ISAR image. Since target motion can always be 
decomposed into translational motion and rotational motion, a typical motion compensation algorithm consists of two steps. 
First, a point on the target is focused through translational motion compensation. When there is non-uniform rotational 
motion, other points on the target are not necessarily focused. Rotational motion compensation is then applied to focus these 
other points. 

Recently, we proposed an ISAR motion compensation algorithm based on joint time-frequency (JTF) analysis. The basic 
idea is to extract the phase of the prominent point scatterer within a range cell via a JTF projection technique. The data is 
systematically projected onto a set of basis functions to determine the one that best resembles the joint (dwell time)-(Doppler 
frequency) behavior of the strongest point scatterer in the range cell. We use polynomial functions as the phase function of 
the basis. Once the phase functions of two point scatterers are found by JTF analysis, both translational and rotational motion 
compensation can be achieved with good accuracy. However, because the phase parameters are obtained by an exhaustive 
search, the algorithm requires heavy computation load if high order polynomials are used. Therefore, the algorithm is not 
practical in dealing with cases where higher order target motions are involved. 

In this paper, the genetic algorithm (GA)4 is explored as an alternative to the exhaustive search in the JTF procedure. GA is a 
stochastic optimization method based on the principle of natural selection and evolution. A set of trial solutions forming an 
initial population is updated iteratively using crossover and mutation operators. From one generation to the next, the overall 
performance of the population is improved. Like exhaustive search, GA is a global optimization procedure. However, it is 
capable of finding the optimum in a very high-dimensional space in a much more efficient manner than exhaustive search. 
This paper is organized as follows. Section 2 gives a summary of the JTF motion compensation technique for ISAR imaging. 
The concept of translational and rotational motion compensation is introduced based on the point scatterer model. Genetic 
algorithm is described in Section 3. The general GA procedure and some issues specific to the motion parameter estimation 
problem are discussed. ISAR imaging results using some real-world data by the proposed JTF/GA method are shown in 
Section 4. Conclusions are given in the final section. 



2.   JOINT TIME-FREQUENCY MOTION COMPENSATION 

The joint time-frequency projection technique3 is used to estimate the phase of a prominent point scatterer. We begin with 
coarsely aligned radar range profiles over a certain dwell interval. Within a fixed range cell, the data can be written as 

Ä Auf 
Es{tD) = 2>,- exp(-7-^(r(rD) + *,. + y &«„))) (1) 

1=1 

where fc is the radar center frequency, tD is the dwell time, <p is the target aspect angle, and r describes the residual 
translational motion. The i'h point scatterer is located at fay,) with o; as its complex scatterering strength. Among the Nr point 

scatterers within the range cell, we express the phase behavior of the strongest one as a polynomial function: 

and consider 

h(t) = cxp[-jPM(tD)] (3) 

as a basis for the radar signal. The phase parameters are then found by searching for the maximum projection from the radar 
signal onto the basis function: 

< /,,/2,/3>••• >= arg max I \ES(tD)h*(tD)dtD I (4) 

In the search procedure, the first term// can be obtained using the fast Fourier transform, while all higher order terms f2, /i, ... 
are obtained using exhaustive search. Figure 1 illustrates the process of JTF phase estimation. Figure 1(a) shows the coarsely 
aligned range profiles. Figure 1(b) shows the joint (dwell time)-(Doppler frequency) behavior of the radar signal in range cell 
r0. It contains three point scatterers. The tilted trajectory of the prominent point scatterer 1 implies there exist higher-order 
terms in the phase function. Figure 1(c) shows the basis function h(tD). During the search, we change the position (/}), tilting 
(f2) and curvature (f3, ...)ofh until the projection of h onto the radar signal is maximized. 

In order to carry out both translational and rotational motion compensation, the JTF phase estimation is needed for at least 
two prominent point scatterers from two different range cells. After phase estimation of the first point scatterer, we multiply 
its conjugate phase to the data to accomplish translational motion compensation. As we can see from Figures 2(a) and 2(b), 
the trajectory of the first point scatterer in the JTF plane is straightened to a horizontal line after the translational motion 
compensation. This point becomes focused in the image and serves as the origin of the remaining rotational motion. After 
phase estimation of the second point scatterer, we resample the phase function to make it into a linear function of dwell time. 
As shown in Figure 2(c), the JTF behaviors of both point scatterers become horizontal lines in the JTF plane and the whole 
target can be focused in the image. The main computational issue involved in this algorithm is an efficient strategy for the 
phase estimation problem in equation (4). Exhaustive search is very computationally intensive, and makes motion 
compensation of targets with higher order motions prohibitive. 

3.   GENETIC ALGORITHM 

We explore the use of genetic algorithm (GA) to improve the computational efficiency of exhaustive search. GA is a global 
optimization method based on the concepts of natural selection and evolution.4"5 The stochastic characteristic of GA makes it 
less vulnerable to local optimums as in deterministic optimization algorithms. Since GA is based on a set of population 
instead of one single possible solution, this helps the algorithm to find the global optimum more easily for a complex object 
function with many local optimums. Another advantage of GA is its robustness. 



Figure 3 shows the flowchart of a simple genetic algorithm. It consists of three steps: 1) Initialization. Because the GA result 
is quite independent of the initial state, usually the initial population consists of random individuals. 2) Selection. Selection is 
based on the fitness of the individual. Individuals in the population are sorted according to the objective function evaluated at 
the corresponding optimization parameters. According to some stochastic strategy, two or more parents are selected to 
generate children. 3) Reproduction. In the reproduction stage, crossover and mutation operators are used to generate new 
individuals from the selected individuals. The crossover operation produces children genetically similar to parents. This 
ensures that good features in the solution are kept from one generation to the next. The mutation operation generates a child 
that is different from the parent. Better solutions containing features not included in the parent population are made possible 
by the added diversity from mutation. 

After a new population is generated by a series of selection, crossover and mutation operations, the selection and 
reproduction processes are iterated until a preset convergence criterion is met. There are several choices for the convergence 
criterion. For example, if we know the true optimal objective function, an RMS error might be set to ensure the solution is 
accurate enough. In case we do not know the truth value, we might set a fixed generation number to balance the solution 
performance with the computational cost. A third option is to stop the process when GA has reached its saturation point. 
Typically, the rate of convergence is fast in the beginning. When GA has run for a long time and the solution performance 
does not improve much, we can choose to stop the process. 

GA operates on coded parameters instead of the parameters themselves. A coded parameter is called a gene, and the string of 
genes to represent a set of optimization parameters is called a chromosome. While in traditional GA the parameters are 
usually binary coded, real-coded GA has also been developed and utilized.6 Binary GA utilizes discrete binary bits to 
represent the parameters. Real GA utilizes continuous real numbers to represent the parameters. The main differences in the 
algorithms of binary versus real GA are the crossover and mutation operators depicted in Figure 4. In Figure 4(a) depicting 
binary GA, each chromosome consists of 8 bits. To make the crossover, 4 bits from the first parent are combined with 4 bits 
from the second parent to form a child. To make the mutation, the content of a random bit is flipped. In Figure 4(b) depicting 
real GA, crossover and mutation are defined as simple additions. The crossover operator is a linear combination of the two 
parents, where a is a random number between 0 and 1. The mutation for real GA adds some randomness to an individual 
chromosome by adding a random vector ß to it. In case the mutated result is out of the search space, the mutation operator is 
repeated until an acceptable value is found. While either binary or real GA can be applied to an optimization problem, it 
appears to us that in problems involving continuous parameters, real-coded GA may achieve better solution performance than 
binary GA, since the binary search space is limited in resolution. Both the real-coded and binary-coded GA are tested for the 
phase estimation problem. 

4.   RESULTS 

To test the accuracy of the GA search for the phase estimation problem, a phase function with 3rd order behavior is used to 
generate a set of simulated data. Real-coded GA is utilized to estimate the phase coefficients. In our GA, we use 50 
chromosomes in the population. The crossover probability is 0.7 and the mutation probability is 0.3. The objective function 
O is defined as the projection value from the data onto the basis. Figure 5(a) shows the convergence curve of one GA run. It 
is seen that after 200 generations the projection value error of the best individual is 3%, while after 400 generations the error 
is about 1%. Figure 5(b) shows the truth phase function and the phase function obtained from the GA-searched parameters 
after 400 generations. The GA phase result is nearly indistinguishable from the truth phase. 

Next, we investigate the computational complexity of the GA search as the number of search parameters is increased. This is 
shown in Figure 6, where the computation time is plotted as a function of the parameter number for both GA and exhaustive 
search. As the dotted curve shows, the computation time for exhaustive search increases dramatically with the number of 
parameters. The solid curve is for the real-coded GA search and it grows much slower than the exhaustive search. This 
means we can use GA to carry out the search much more efficiently when a large number of parameters is involved. 

Finally, we test the GA search for the JTF phase estimation problem with a real radar data set.7"8 There is no significant 
rotational motion of the target in this data so the phase estimation of only one point scatterer is needed. Imaging results from 
real-coded GA are compared to those from binary-coded GA and exhaustive search. Figures 7(a)-(c) show images generated 
for a typical frame using exhaustive search, binary-coded GA and real-coded GA, respectively. The corresponding 
computation time is 45 s, 22 s, and 16 s. In the 20 frames we examined, it is found that in 19 frames, the real-coded GA gave 
larger projection values than exhaustive search. The resulting image quality is either on par or slightly better than those 



obtained from the exhaustive search, while the computation time is about 1/3 to 1/9 of the exhaustive search. For the binary- 
coded GA, 8 frames are found to be of inferior image quality than the exhaustive search result. Therefore, real-coded GA 
appears to be the better choice for the JTF motion compensation problem at hand. 

5.   CONCLUSIONS 

One problem with JTF-based ISAR imaging is the time complexity associated with the exhaustive search process. In this 
paper, GA is used to replace the exhaustive search process in the JTF phase estimation for higher efficiency. It is shown that 
the real-coded GA achieves almost the same image quality while saves computation time significantly. With GA, the 
computation time complexity for higher order motion is much smaller than that of exhaustive search. Therefore, GA is a 
good candidate for performing ISAR motion compensation of targets with higher order motion. 
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Abstract 

With the assumption of rigid body motion, traditional high-resolution ISAR 

imaging is capable of generating a (range)-(cross range) image of the target. When the 

target has non-rigid body motion, the resulting radar image does not preserve the spatial 

features of the target. In this paper, we investigate the extraction of micro-Doppler 

features due to non-rigid body motions. Joint time-frequency analysis with adaptive 

chirplet basis functions is employed to represent the range compressed radar data. After 

the parameterization, returns from different moving parts on the target can be easily 

separated. The algorithm is applied to analyze the measurement data from a walking man. 

It is shown that the rate of the arm swing can be accurately estimated after the extraction. 

1.   Introduction 

In inverse synthetic aperture radar (ISAR), the backscattered data from a moving 

target is collected and processed with a motion compensation algorithm to generate a 

(range)-(cross range) image of the target. Since the image is a 2-dimensional projection 

of the target, spatial features present in the image are useful for target identification 



purpose [1]. A basic assumption in ISAR imaging is that the target is a rigid body during 

the data acquisition time. 

However, non-rigid body motions (associated with a target which is not a rigid 

body) can exist in many real targets. For example, a target may consist of multiple 

movable components. In such cases, a focused ISAR image resembling the original target 

cannot be obtained by the tradition ISAR processing. On the other hand, while the 

geometrical relationship is difficult to capture, motion features are still embedded in the 

radar data. Recently, the term micro-Doppler has been coined to describe the small 

motion features of a non-rigid target [2]. Micro-Doppler provides an additional feature to 

the Doppler return from the main body motion, and has been studied for identifying the 

natural resonant frequency of a tractor-trailer truck [3]. 

In this paper, we investigate the problem of micro-Doppler feature extraction from 

ISAR data. The approach we use is adaptive joint time frequency (AJTF) analysis [4,5], 

with chirplet as the basis function to represent the signal [6]. This work is an 

improvement of the work reported in [7], where chirp basis functions with constant 

amplitude were used to model the radar return from a helicopter. We apply the algorithm 

to the radar data from a walking man and extract micro-Doppler features due to the 

swinging arms. 

2.  Adaptive Chirplet Representation 

Adaptive joint time-frequency analysis is a good tool to analyze the time-varying 

Doppler features of a target. Previously, AJTF was utilized to achieve ISAR motion 

compensation [8]. As in [7], we are interested here in parameterizing the radar return so 



that we can extract the different components of the signal for further processing. For this 

purpose, the chirplet basis function proposed in [6] is used. The radar signal as a function 

of dwell time t is expanded in terms of JV basis functions as follows: 

*(0 = Zc*(2a*'^m exP[~(?~tk)1'°k + J2^(t~tk) + jnßk(t-h)1]     (1) 
k=l 

where ck is the coefficient with the k'h basis function. Each basis function is a four- 

parameter chirplet with time location tk, frequency center fk, time extent £&, and chirp rate 

ßk. The parameters for all the individual chirplets are found adaptively. The chirplet with 

the highest energy is extracted first. We exhaustively search for the maximum projection 

from the radar signal onto the set of basis functions in the parameter space. Once the best 

basis is identified, we then subtract its contribution from the radar signal and continue to 

search for the next best basis. This process is iterated until we have a good representation 

the original signal. 

3.   Results from Walking Man Data 

A particular example with micro-Doppler features is the radar data of a walking 

man [2]. Figure 1 shows the geometry of the situation. During the data collection, a man 

walked toward the radar. At least two different motions were present on the walking man: 

the steady body motion and the swinging arm motion. One segment of the radar data after 

range compression is shown in Figure 2. We see the nearly linear range variation in the 

figure due to the steady walking speed of the man. We first carry out a coarse range 

alignment by correlating the range profiles. The signal through a particular range cell is 

then used for JTF processing. Shown in Figure 3 is the spectrogram (generated using the 



short-time Fourier transform) of the radar signal in a particular range cell containing 

strong micro-Doppler. We immediately recognize the two motion components present in 

this figure. The horizontal trajectory is due to the body motion, while the sinusoidal curve 

is due to the arm swing. 

We apply the JTF extraction outlined in Section 2 and extract 50 chirplets. After the 

parameterization, we separate the body and the arm returns. As can be seen in Figure 3, 

the body return should consist of chirplet bases with both small Doppler frequency fk and 

small chirp rate ßk. By applying this criterion to the basis functions representing the 

signal, we can separate the body return from the arm return. The results are shown in 

Figures 4a and 4b, respectively. Notice that the main features in the two returns are 

preserved after the JTF extraction. The Doppler features due to the arm swing shown in 

Figure 4b are nearly periodic. This period can be easily estimated from the arm-only data 

by taking the autocorrelation of the time sequence. The result is shown in Figure 5a. The 

peaks in the autocorrelation function indicate the period of the motion and it is estimated 

to be 0.44 sec. Note that without using JTF analysis, accurate detection of the swing 

period would be more difficult due to the presence of the body return. The 

autocorrelation calculated from the unfiltered data is shown in Fig. 4b. As we can see, the 

peaks are much less prominent. 

4.  Conclusions 

Adaptive joint time-frequency analysis is an effective technique to extract micro- 

Doppler features. Using the measured radar data of a walking man, we showed that it is 

possible to separate the return of the body from that of the swinging arm. Furthermore, 



we showed that the arm swing period could be accurately estimated from the arm return. 

This work can be extended for other targets with non-rigid body motions. The extracted 

micro-Doppler features may be exploited for target identification applications. 
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Fig. 4   Separation of the contribution from (a) the body and (b) the swing arm 
using the adaptive chirplet representation. 
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Fig. 5   Autocorrelation to determine the rate of arm swing, 
(a) after JTF extraction (b) before JTF extraction. 


